

Hilrepolen
4.1 Types of polypropylenes
4.2 Physico-chemical properties
4.3 Chemical resistance
4.4 Regression curves

Poduct range

5.1 Single-layer PPR pipes
5.2 Three-layer FASER pipes
$\begin{array}{lll}5.2 & \text { Three-layer FASER pipes } \\ 5.3 & \text { Fittings } & 26\end{array}$
6 System features
$\begin{array}{lll}\text { 6.1 } & \text { Main advantages } & 30 \\ \text { 6.2 Application fields } & 30\end{array}$
6.3 Marking and traceability 31
6.4 Handling and storage 32
6.5 Antilegionella treatments 33
6.6 Recycling - Environment

Installation criteria

7.1 Expansion calculation
$\begin{array}{lll}\text { 7.1 } & \text { Expansion calculation } \\ \text { 7.2 } & \text { Distance between supports }\end{array}$
7.3 Insulation
7.4 Hydraulic start-
7.5 Water hammer
7.6 Pressure drop
$\begin{array}{ll}\text { 7.8 } & \text { Installations sizing }\end{array}$
7.9 On-site recommen

Connection systems

8.1 Thermofusion or socket welding connection 62
8.2 Butt weld connection
8.3 Electrofusion connectio
. 5 .
8.5 Installation of branch systems
8.6 System repair

80	Material proper	10
82	What is Polyethylene. Types of polyethylene	
82	Physico-chemical properties	
83	Gas permeability of PE pipes	
83	Chemical resistance	
83	Bacterial resistance	
84	Product ran	11
86	PE-100 pipes UNE-EN 12201	
86	Human consumption	
86	Reclaimed water	
86	Sewerage, sanitation and other applications	
87	Pe-100 Pipes UNE-EN 15501 (Gas)	
87	PE-100 pipes Cables, electricity and telecommunications	
88	Fittings	
90	System featu	12
92	Main advantages	
93	Application fields	
94	Marking and traceability	
95	Storage, handling and transport	
96	Installation crite	13
98	Buried Installations	
100	Non-buried installations	
103	Flexibility. Curvature	
104	Pressure drop	
106	Water hammer	
107	Hydraulic start-up test	
108	Connection syste	14
110	Thermofusion or socket welding connection	
113	Butt weld connection	
114	Electrofusion connection	
115	Flanged systems	
115	Mechanical systems	
116	Installation of branch systems	
117	System repair	

REBOCA, SL is a company with 100% Spanish capital, which was founded in 1981 having as its main activity the recovery and recycling of plastic materials.

After some time, the company began to diversify its product range, entering the drip irrigation fittings and piping market. Little by little, the offer of fittings was extended, until in 1985, REBOCA, SL begins to manufacture piping for the supply of pressurised water.

This represents a major growth for the company since the service to clients is not only provided in terms of piping, but also in relation to all fittings necessary for the installation assembly, both of irrigation and pressurised water.

While the company grows in this sense, it abandons the recovery and recycling of materials, in order to be able to focus its efforts on piping manufacture.

In 1992, the random polypropylene (PP-R), piping and fittings for the pressurised hot and cold water pipeline, for heating, cooling, hot water system, sanitary water and water for human consumption REPOLEN product range was added to our catalogue.

In 1994 an entire line of piping and fittings made in high-density polyethylene (PE-100) for pressurised cold water pipelines, sanitary water and water for human consumption, recycled water, gas, hydrocarbons; joined by polyfusion with socket system was added, obtaining a complete range of products easy to install and with the same connection technique. This made it possible to complete the offer for installations.

Since then and until now, REBOCA, S.L. has been working on PE-32 and PE-40 pipe manufacture for irrigation and pressure, PE-100 for pressurised cold water and PP-R for pressurised cold and hot water, as well as the necessary fittings.

In January 2001, the Company Registration Certificate according to UNE-EN ISO 9001 was granted by AENOR. At the end of March of the same year, the AENOR N mark was granted for PP-R pipe manufacture in our facilities in L'Ollería (Valencia).

- In December of the same year, the AENOR N mark for PE-100 pipe manufacture was obtained.
. In June 2002 the AENOR N mark for PE-40 and PE-32 pipes for microirrigation was obtained.
The PP-R fittings are certified in 2007
- In 2009 the REPOLEN PP-R system is certified.
- In 2010, DNV certification for PE-100 and PP-R and AENOR N certification for PE-100 and PP-R batteries and manifolds were obtained - In 2011, the AENOR N mark for PE-100 gas pipes is obtained.

In 2013, the AENOR N certification for PE-RT (temperature resistant polyethylene) pipes for heating water and radiant floor was obtained.
In 2015 , the Faser multilayer (PP-R / PP-R with fibre glass / PP-R) pipe for pressurised hot water, cooling and hot water system certification was obtained.

Currently and by exclusive decision of REBOCA, S.L. and under commercial criteria, the following certifications are maintained:

\author{

- Pp-R pipes
PP-R Fittings
 - REPOLEN system in PP-R
 - PE-100 pipes for water
 - PE-100 pipes for gas
 - PE-40 Pipes
 - Faser Multilayer Tubes
}

One of the main concerns of REBOCA, S.L. has been and continues to be to offer our clients products with the highest quality, for this purpose we have been adapting our facilities and our products catalogue to their needs.

2.1 APPLICATION STANDARDS

\square UNE IN 1555 : Plastics piping systems for the supply of gaseous fuels. Polyethylene (PE)
UNE IN 12201: Plastics piping systems for water supply Polyethylene (PE)

- UNE IN ISO 15874: Plastics piping systems for hot and cold water installations Polypropylene (PP)

UNE 53394 IN: Plastics. Code for the installation and handling of polyethylene (PE) pipes for water piping under pressure. Recommended Techniques

- UNE 53943: Plastic networks to centralise water meters. Polyethylene (PE), polypropylene (PP) and polybutylene (PB) networks with butt welded joints RP 001.01: Specific AENOR N marking regulations for polyethylene (PE) pipes for water supply and sanitation under pressure.
- RP 001.52: Specific AENOR N marking regulations for plastic piping systems for hot and cold water installations.

RP 001.72: Specific regulations for the AENOR certificate of conformity for polypropylene (PP-R) and fibreglass (FV) piping systems for hot and cold water installations inside the structure of buildings.

RP 01.73: Specific AENOR N marking regulations for polyethylene (PE) fittings for the supply of gaseous fuels.

22 REFERENCE DOCUMENTS

- CTE: Technical Building Code
- RITE: Regulation of Thermal Installations in Buildings

ISO 9001: Quality management systems. Requirements
ISO 14001: Environmental management systems. Requirements with guidance for use
\square UNE 53943: Plastic networks to centralise water meters. Polyethylene (PE), polypropylene (PP) and polybutylene (PB) networks with butt welded joints

- UNE 53959 IN: Plastics. Thermoplastics pipes and fittings for the transport of liquids under pressure. Calculation of head losses

UNE-EN 476: General requirements for components used in discharge pipes, drains and sewers for gravity systems UNE-EN 752: Drain and sewer systems outside buildings
UNE-EN 805: Water supply - Requirements for systems and components outside buildings
UNE-EN 806: Specifications for installations inside buildings conveying water for human consumption
UNE-EN 1295: Structural design of buried pipelines under various conditions of loading.
UNE-EN 1610: Installation and testing of sewage connections and networks.
UNE-EN 12666: Plastics piping systems for non-pressure underground drainage and sewerage Polyethylene (PE)

- UNE-EN 13244: Plastics piping systems for buried and above-ground pressure systems for water for general purposes, drainage and sewerage - Polyethylene (PE)

UNE-EN 13476: Plastics piping systems for non-pressure underground drainage and sewerage Structured-wall piping systems of unplasticised
\square poly(vinyl chloride) (PVC-U), polypropylene (PP) and polyethylene (PE)
UNE-EN 13689: Guidance on the classification and design of plastics piping systems used for renovation
UNE-EN 14409: Plastics piping systems for renovation of underground water supply networks
UNE-EN 50086: Conduit systems for cable management
UNE-EN ISO 15494: Plastics piping systems for industrial applications. Polybutene (PB), polyethylene (PE), and polypropylene (PP). Specifications \square for components and the system. Metric Series

UNE-ENV 12108: Plastics piping systems Guidance for the installation inside buildings of pressure piping systems for hot and cold water intended
\square for human consumption
Polyethylene piping. Technical Manual. ASETUB

■ Equipment for the control of the fluidity index

- Eq

Equipment for controlling the contents of fibre glass, ashes, carbon black, etc.
Dimensional inspection equipment (inner and outer caliper, circrometer, micrometer, magnifying glass)

- Equipment for water tightness control
- Equipment for longitudinal shrinkage control

Equipment for resistance to cracking control
Equipment for tensile test control

- Equipment for impact resistance control

Equipment for internal pressure resistance control

\square Product Certificates
\square Product compliance certificates

PIPELINES

The REPOLEN* system used in hydro-sanitary installations, following the guidelines indicated in the Technical Manual, is covered by an insurance policy contracted by REBOCA, S.L. TRANSFORMADOS PLASTICOS; with the company GROUPAMA; Policy no. $63,132,771$ for a value of 1,202,040 euros.
\square The conditions governing this warranty are:
Send the warranty certificate within 10 days of completion of the installation.
The pipes and fittings must be installed following the instructions, warnings, and recommendations contained in the REPOLEN ${ }^{\circ}$ Technical Manual. Insurance coverage will be for 10 years from the date of production marked on the pipe and fittings. Within this time frame, damages up to $1,202,040$ euros, caused both to objects or people, by the breakage of a REPOLEN* pipe or fitting with manufacturing defects, will be compensated.

The warranty is not valid in the following cases:
The connection between the pipe and the fitting, with heat source with temperature and pressure limits, even if accidental, is not compatible with the features of the material used by the REPOLEN ${ }^{*}$ system.
Failure to follow the instructions for use, warnings, and recommendations in the REPOLEN ${ }^{\circ}$ Technical Manual
Use of obviously defective materials (cracked pipes and fittings, etc.)
Use of components not manufactured by REPOLEN* / REBOCA, S.L. for the execution of the installation

- Incorrect or defective welding due to the use of unsuitable fittings.

Instructions for Claiming Warranty Intervention:

In the event of damage attributable to the pipe or fitting, and only for the reasons described above, you must inform REBOCA, S.L. by registered letter of the type of damage and send the damaged piece of pipe or the fitting, as well as a copy of the Warranty Certificate, which must

include

- Place and date of installation.
- Name and address of the installer
- Marking of the pipe or fitting, if possible on the product or on the container.

After receiving the above in our Company, within a reasonable time frame, our company will make the necessary arrangements and transfer the
documentation received to the Insurance Company.

Any payment made by REBOCA, S.L. to carry out the procedures with the Insurance Company will be borne by the claimant, if the reasons for the breakage are not those foreseen within the warranty.

MATERIAL

PROPERTIES

4.1 TYPES OF POLYPROPYLENES

Polypropylene is a polymer formed by monomeric high molecular weight chains of propylene, which gives excellent mechanical properties, making it suitable for both hot and cold water installations.
Depending on the type of monomers and their molecular arrangement, three types of polypropylene can be identified:

- PP-H (polypropylene Homopolymer). It only has propylene monomers. It is not suitable for human consumption water, nor for pressurised cold water use. It is therefore used for transporting hot water, sewerage drain, industrial fluids, etc.
- PP-B (polypropylene block). It has propylene and ethylene monomers arranged by blocks in polymer chains. It is very resistant to impact, even at low temperatures but does not have much pressure resistance. It is not suitable for human consumption water. It is used little and basically for drainage.
- PP-R (polypropylene random). The propylene and ethylene monomers are randomly arranged in the chains, providing very good mechanical properties, especially under pressure with or without temperature. Suitable for human consumption water.

4.2 PHYSICAL MECHANICAL PROPERTIES

REPOLEN* piping and fittings are manufactured with type 3 Polypropylene Random Copolymer, a very high molecular weight propylene and ethylene REPOLEN ${ }^{\circ}$ piping and fittings are manufactured with type 3 Polypropylene Random Copolymer, avery high molecular weight propylene and ethylene
copolymer with a random arrangement of monomers, with excellent mechanical resistance up to $100^{\circ} \mathrm{C}$ and an exceptional chemical resistance that makes it the best system for transporting food liquids and other hot fluids under pressure.

It also has a high resistance, which ensures easy handing for installation and transport even at temperatures below $0^{\circ} \mathrm{C}$.

PROPERTY	value	UNITS	TEST PROCEDURE
Fluidity Index ($230^{\circ} \mathrm{C} ; 2.16 \mathrm{~kg}$)	0.3	gr/10 min	ISO 1133
Fluidity Index ($230^{\circ} \mathrm{C} ; 5 \mathrm{~kg}$)	1.2	$\mathrm{gr} / 10 \mathrm{~min}$	ISO 1133
Density at $23^{\circ} \mathrm{C}$	905	Kg/m3	ISO 1183
Elastic Flexural Modulus	815	MPa	ISO 178
Charpy impact resistance with notch, $23^{\circ} \mathrm{C}$	>9	kJ/m2	ISO 179
Tensile strength at the Yield point	34	MPa	ISO 527-2
Tensile strength at the breaking point	27	MPa	ISO 527-2
Elongation at the breaking point	> 520	\%	ISO 527-2
VICAT, 9.8 N	70	${ }^{\circ} \mathrm{C}$	ISO 306
HDT 0.45 MPa	45	${ }^{\circ} \mathrm{C}$	ISO 75
Long-term hydrostatic resistance after 50 years and $20^{\circ} \mathrm{C}(97.5 \% \mathrm{LCL})$, MRS	> 8.0	MPa	ISO TR 9080
Fire Classification. Multilayer Faser pipe. Halogen free	B2	---	DIN 4102

CHEMICAL RESISTANCE 4.3

PRODUCT

5.1 Single-layer PPR pipes according to UNE-EN ISO 15874
5.2 Three-layer FASER pipes according to UNE-EN ISO 15874
5.3 Fittings

5.1 SINGLE-LAYER PPR PIPES ACCORDING TO

(1)

S5 SDR11 PN10 application classes/design pressure: 4/6; 2/4; 1/6				
Nominal diameer (mm)	Internal diameer (mm)	Thickness (mm)	Weight (kg/m)	Capacity (1/m)
20	16.2	1.9-2.2	0.11	0.21
25	20.4	2.3-2.7	0.17	0.33
32	26.2	2.9-3.3	0.27	0.54
40	32.6	3.7-4.2	0.42	0.83
50	40.8	$4.6-5.2$	0.67	1.31
63	51.4	5.8-6.5	1.04	2.07
75	61.4	6.8 - 7.6	1.45	2.97
90	73.6	8.2-9.2	2.09	4.25
110	90	10-11.1	3.11	6.36
125	102.7	11.4-12.7	3.28	8.2
160	130.8	14.6-16.2	6.6	13.44

©

S3.2 SDR7.4 PN16 application classes/design pressure: 5/6; 4/10; 2/6; 1/8				
Nominal diameter (mm)	Internal diameter (mm)	Thickness (mm)	Weight (kg/m)	Capacity (1/m)
16	11.6	2.2-2.6	0.09	0.1
20	14.4	2.8-3.2	0.15	0.16
25	18	$3.5-4$	0.23	0.25
32	23.2	4.4-5	0.36	0.42
40	29	5.5-6.2	0.57	0.66
50	36.2	$6.9-7.7$	0.9	1.03
63	45.8	8.6-9.6	1.4	1.65
75	54.4	10.3-11.5	2	2.32
90	65.4	12.3-13.7	2.85	3.36
110	79.8	15.1-16.8	4.19	5
125	90.8	17.1-19	5.52	6.47
160	116.2	21.9-24.2	8.69	10.

(1)

S2.5 SDR6 PN20 application classes/design pressure: 5/6; 4/10; 2/8; 1/10				
Nominal diameter (mm)	Internal diameter (mm)	Thickness (mm)	Weight (kg/m)	Capacity (1/m)
16	10.6	2.7-3.1	0.11	0.09
20	13.2	3.4-3.9	0.17	0.14
25	16.6	4.2-4.8	0.26	0.22
32	21.2	5.4-6.1	0.42	0.35
40	26.6	6.7-7.5	0.66	0.56
50	334	8.3-9.3	1.03	0.87
63	42	10.5-11.7	1.65	1.38
75	50	12.5-13.9	2.3	1.96
90	60	15-16.6	3.31	2.83
110	73.4	18.3-20.3	4.9	4.21
125	83.4	20.8-23	6.42	5.46

Period of operation		Pressure (mbar)		
Temp.	Years of service	S5 SDR11 single layer	S3.2 SDR7. 4 single layer	S2.5 SDR6 single layer
$10^{\circ} \mathrm{C}$	1	17,6	27,8	35
	5	16,6	26,4	33,2
	10	16,1	25,5	32,1
	25	15,6	24,7	31,1
	50	15,2	24	30,3
$20^{\circ} \mathrm{C}$	1	15	23,8	30
	5	14,1	22,3	28,1
	10	13,7	21,7	27,3
	25	13,3	21,1	26,5
	50	12,9	20,4	25,7
$30^{\circ} \mathrm{C}$	1	12,8	20,2	25,5
	5	12	19	23,9
	10	11,6	18,3	23,1
	25	11,2	17,7	22,3
	50	10,9	17,3	21,8
$40^{\circ} \mathrm{C}$	1	10,8	17,1	21,5
	5	10,1	16	20,2
	10	9,8	15,6	19,6
	25	9,4	15	18,8
	50	9,2	14,5	18,3
$50^{\circ} \mathrm{C}$	1	9,2	14,5	18,3
	5	8,5	13,5	17
	10	8,2	13,1	16,5
	25	8	12,6	15,9
	50	7,7	12,2	15,4
$60^{\circ} \mathrm{C}$	1	7,7	12,2	15,4
	5	7,2	11,5	14,3
	10	6,9	11	13,8
	25	6,7	10,5	13,3
	50	6,4	10,1	12,7
$70^{\circ} \mathrm{C}$	1	6,5	10,3	13
	5	6	9,5	11,9
	10	5,9	9,3	11,7
	25	5,1	8	10,1
	50	4,3	6,7	8,5
$80^{\circ} \mathrm{C}$	1	5,5	8,6	10,9
	5	4,8	7,6	9,6
	10	4	6,3	8
	25	3,2	5,1	6,4
$90^{\circ} \mathrm{C}$	1	---	6,1	7,7
	5	---	4	5

Period of operation		Pressure (mbar)		
Tempera		Years of	S3. 2 SDR7. 4	S25 SDR6
Permanent at $70^{\circ} \mathrm{C}$ with 30 days a year at	$75^{\circ} \mathrm{C}$	5	9,41	11,54
		10	9,11	11,16
		25	8,26	9,64
		45	7,16	8,38
	$80^{\circ} \mathrm{C}$	5	9,1	11,16
		10	8,8	10,8
		25	7,86	9,17
		42,5	6,9	8,08
	$85^{\circ} \mathrm{C}$	5	8,49	10,44
		10	8,21	10,08
		25	7,19	8,4
		37,5	6,52	7,63
	$90^{\circ} \mathrm{C}$	5	7,8	9,6
		10	7,5	9,27
		25	6,33	7,4
		35	5,83	6,83
Permanent at $70^{\circ} \mathrm{C}$ with 60 days a year a	$75^{\circ} \mathrm{C}$	5	9,36	11,47
		10	9,06	11,1
		25	8,1	9,45
		45	7,02	8,22
	$8^{\circ} \mathrm{C}$	5	8,9	10,92
		10	8,61	10,56
		25	7,43	8,68
		40	6,63	7,77
	$85^{\circ} \mathrm{C}$	5	8,23	10,11
		10	7,95	9,77
		25	6,54	7,65
		35	6,03	7,06
	$90^{\circ} \mathrm{C}$	5	7,53	9,27
		10	7,27	8,95
		25	5,57	6,53
		30	5,33	6,25
Permanent at $70^{\circ} \mathrm{C}$ with 90 days a year at	$75^{\circ} \mathrm{C}$	5	9,31	11,42
		10	9,01	11,05
		25	7,95	9,29
		45	6,89	8,08
	$8^{\circ} \mathrm{C}$	5	8,77	10,76
		10	8,48	10,41
		25	7,11	8,31
		37,5	6,44	7,23
	$85^{\circ} \mathrm{C}$	5	8,07	9,92
		10	7,8	9,58
		25	6,11	7,15
		32,5	5,73	6,72
	$90^{\circ} \mathrm{C}$	5	7,38	9,08
		10	7,13	8,77
		25	5,12	6,01

5.2 THREE-LAYER FASER PIPES ACCORDING TO

©

FASER-CT S4 SDR 9 application classes / design pressure: 5/4; 4/8; 2/4; 1/6					
Nominal diameter (mm)	Inemal diameter (mm)	Thidness (mm)	Layer thidnese $\mathrm{Fv}(\mathrm{mm})$	Weight (kgm)	Capaity (1m)
32	24,8	3,6-4,1	$>0,9$	0,328	0,483
40	31	4,5-5,1	> 1,12	0,511	0,754
50	38,8	5,6-6,3	> 1,4	0,791	1,182
63	48,8	7,1-8	> 1,77	1,261	1,869
75	58,2	8,4-9,4	>2,1	1,771	2,659
90	69,8	10,1-11,3	>2,52	2553	3,825
110	88,4	12,3-13,7	>3,07	3,789	5,725
125	97	14-15,5	>3,5	4,886	7,386
160	124,2	17,9-19,8	>4,47	7,987	12,109

FASER S3.2 SDR7.4 application classes/design pressure: 5/6; 4/10; 2/6; 1/8					
Nominal diamater (mm)	Inemal diamter (mm)	Thichnes (mm)	Layer tididness FV (mm)	Weight (kytm)	Capaity (lm)
20	14.4	2.8-3.2	> 0.7	0.16	0.16
25	18	$3.5-4$	> 0.9	0.25	0.25
32	23.2	4.4 - 5	> 1.1	0.39	0.42
40	29	5.5-6.2	> 1.4	0.61	0.66
50	36.2	$6.9-7.7$	> 1.8	0.95	1.03
63	45.8	8.6-9.6	>2.2	1.49	1.65
75	54.4	10.3-11.5	>2.6	2.11	2.32
90	65.4	12.3-13.7	> 3.07	3.03	3.36
110	79.8	15.1-16.8	> 3.77	4.53	5
125	90.8	17.1-19	> 4.26	6.21	6.47
160	116.2	21.9-24.2	> 5.47	9.75	10.6

Period of operation			Pressure (bar)			$10^{\circ} \mathrm{C}$	10	$\begin{aligned} & 26,2 \\ & 25,6 \end{aligned}$	$\begin{aligned} & 27,9 \\ & 27,5 \end{aligned}$	$\begin{aligned} & 28,2 \\ & 27,7 \end{aligned}$
Temperature		Years of service	S5 SDR11 Faser Climate	S4 SDR9 Repolen Faser	S3,2 SDR7,4 Repolen Faser		25	24,7	27,1	26,9
	$75^{\circ} \mathrm{C}$	5	9,38	12,9	14,27		50	24,1	26,7	26,1
		10	9,08	12,6	13,79		100	23,5	26,3	25,2
		25	7,82	12,2	11,74	${ }^{15}{ }^{\circ} \mathrm{C}$	1	25,7	26,9	29,4
		45	6,77	12,2 12	10,18		5	24,2	26	27,4
	$80^{\circ} \mathrm{C}$	5	8,88	11,7	13,5		10	23,6	25,7	26,9
		10	8,46	11,4	12,8		25	22,8	25,2	26,1
		25	7,38	11,1	11,14		50	22,2	24,9	25,3
		42,5	6,49	10,9	9,79		100	21,6	24,5	24,5
	$8^{\circ} \mathrm{C}$					$20^{\circ} \mathrm{C}$	1	23,8	25	28,6
		5	8,17	10,7	12,42		5	22,3	24,2	26,8
		10	7,82	10,4	11,87		10	21,7	23,9	26,1
		25	6,7	10,1	10,14		25	21	23,5	25,3
		37,5	6,07	10	9,18		50	20,4	23,1	24,5
	$90^{\circ} \mathrm{C}$	5	7,5	9,8	11,39		100	19,9	22,8	23,7
		10	7,19	9,5	10,94	$30^{\circ} \mathrm{C}$	1	20,2	21,7	24,3
		25	5,85	9,2	8,86		5	18,9	20,9	22,8
		35	5,39	9,1	8,16		10	18,4	20,6	22
Permanent at $70^{\circ} \mathrm{C}$ with 60 days a year a	$75^{\circ} \mathrm{C}$	5	9,26	12,3	14,11		25	17,8	20,2	21,3
		10	8,9	12,1	13,57		25 50	17,8	20,2	20,
		25	7,62	11,7	11,58		50			20,7
		45	6,6	11,5	10,05		100	6,8	19,7	20
	$80^{\circ} \mathrm{C}$	5	8,61	11,4	13,12	$40^{\circ} \mathrm{C}$	1	17,1	18,6	20,5
		10	8,24	11,2	12,54		5	16	18	19,2
		25	6,93	10,8	10,56		10	15,6	17,7	18,7
		40	6,18	10,7	9,41		25	15	17,3	18
	$85^{\circ} \mathrm{C}$	5	7,91	10,4	12,03		50	14,6	17,1	17,5
		10	7,56	10,2	11,52		100	14,1	16,8	16,8
		25	6,05	9,9	9,22	$5^{50} \mathrm{C}$	1	14,5	15,9	17,5
		35	5,57	9,8	8,48		5	13,5	15,3	16,2
	$90^{\circ} \mathrm{C}$	5	7,25	9,5	11,04		10	13,1	15,1	15,7
		10	6,4	9,3	9,76		25	12,6	14,7	15,2
		25	5,12	9,1	7,81		50	12,2	14,5	14,7
Permanentat $70^{0} \mathrm{C}$ with 90 days a year a	$75^{\circ} \mathrm{C}$	30 5	4,9	12,2	7,46		100	11,9	14,3	14,1
		10	8,79	12	13,38		1	12,2	13,5	14,7
		25	7,45	11,6	11,33		5	11,4	13	13,7
		45	6,45	11,4	9,82	$60^{\circ} \mathrm{C}$	10	11	12,7	13,2
	$80^{\circ} \mathrm{C}$	5	8,46	11,3	12,9		25	10,6	12,4	12,6
		10	8,11	11	12,35		50	10,3	12,2	12,1
		25	6,6	10,7	10,05	$70^{\circ} \mathrm{C}$	1	10,3	11,3	12,4
		37,5	5,98	10,6	9,09		5	9,6	10,9	11,4
	$8^{5}{ }^{\circ} \mathrm{C}$	5	7,76	10,3	11,81		10	9,2	10,7	11,1
		10	7,03	10,1	10,72		25	8	10,4	9,6
		25	5,63	9,8	8,58		${ }_{5}$	8	10,4	9,6
		32,5	5,28	9,7	8,03		50	6,8	10,2	8,1
	$90^{\circ} \mathrm{C}$	5	6,96	9,4	10,59	$75^{\circ} \mathrm{C}$	${ }^{1}$	9,4	10,4	11,7
		10	5,88	9,2	8,96		5	8,7	9,9	10,8
		25	4,7	8,9	7,17		10	8	9,7	10
							25	6,4	9,5	8
							50	5,4	9,3	6,7
						${ }^{80}{ }^{\circ} \mathrm{C}$	1	8,6	9,5	10,4
							5	7,7	9	9,2
							10	6,5	8,9	7,8
							25	5,2	8,6	6,2
						$90^{\circ} \mathrm{C}$	1	7,2	7,8	8,7
							5	5,1	7,4	6
							10	4,3	7,3	5,1

5.3 FITTINGS

TERMO FUSION

SYSTEM
FEATURES
6.1 Main advantages
$\begin{array}{ll}\text { 6.2 } & \text { Application fields } \\ \text { 6.3 } & \text { Marking and traceability }\end{array}$
6.3 Marking and traceability
6.4 Handling and storage
6.4 Handling and storage
$\begin{array}{ll}\text { 6.5 } & \text { Antilegionella treatments } \\ \text { 6.6 } & \text { Recycling-Environment }\end{array}$

6.1 MAIN ADVANTAGES

- High resistance to long-term internal pressure and high tem peratures.
\square Non-toxic. Suitable for the use with drinking water. Does not add odour, colour or taste of any kind, making it especially suitable for the transport of large quantities of food products, 100 \% recyclable.
- High resistance to chemical corrosion of both acids and alkalis. Fully reliable in saline environments (sea water, etc.)
\square Interior with mirror finish, which means total absence of fouling and very low pressure drop.
\square Low thermal conductivity coefficient. Low heat loss. Minimal condensation.Electrical insulator. High resistance to eddy currents.

6.2 APPLICATION FIELDS

REPOLEN systems are designed to provide solutions in all those applications that require the transport of pressurised cold and hot water, both for human consumption and domestic or industrial use.
In addition to its basic applications, the system's great features make it possible for it to be used in endlessly different applications.
The great difference between the REPOLEN and the REPOLEN FASER systems lies in the difference in lineal expansion, which makes it possible for it to adapt to the possibilities of each installation.
Some of the most common uses are:

Hydrosanitary installations: Connections, meters and mani-
fold panels, pillars, distribution branches, boilers, accumulators, return lines.

Very easy to assemble. Much lighter than other traditional ma terials.

- Highly resistant to abrasion.

Excellent behaviour to antilegionella treatments according to standard.

- Very low noise transmission level.

Very low celerity (wave propagation velocity).
Resistant to cold. Given the material's plasticity, it is capable of absorbing most of the volume increase in cases of freezing.

- Acoustic insulation. Thanks to the low celerity of the material (wave propagation velocity), it features an excellent damping effect against the transmission of noise during fluids' passage.

Air conditioning both with fan coils and radiant floor

Heating in even high-temperatu-
re boilers, radiant floor, radiators, re boile
etc.

Thermal waters, swimming pools, geothermal installations

Facilities sensitive to disinfection against legionella, such as hospitals, schools, institutional buildings, hotels, sports facilities, etc.

Recycled water installation where even solids may be washed away.

Compressed air systems.

Installations for the transport of industrial liquids: industrial refrigeration, chemical industries, food industries, ...

Pipes marking is done in accordance with the UNE EN ISO 15874 standard and the requirements of the AENOR Special Regulations, RP.001.52, and RP.001.72. The purpose of pipe marking is to provide the necessary information to the installer, the user and the manufacturer, if necessary. The marking includes:

- Trademark: REPOLEN

Reference to the AENOR mark (Product Certificate or Certificate of Conformity) and contract number

- Material it is made of

Nominal diameter and thickness

- Application class and nominal pressure (see below)

Manufacturing period

- Reference standard
- Symbol for suitability for food use

Reference to 100% ntionl mane

The manufacturing period is unique for each pipe production, enabling complete traceability of the finished product. Knowing this number makes it possible to make a complete tracking, from the entry of raw material to the delivery at our clients' home

As for the application class, according to the standard, pipes are marked with the design pressure (not nominal or working pressure) for a given application class. The design pressure is defined as the maximum pressure in relation to the circumstances for which the system has been designed.
 According to the standard, these pressures are $4,6,8$ and 10 bar

With regard to the application class, the standard distinguishes between 4 classes:

$\begin{aligned} & \text { Application } \\ & \text { class } \end{aligned}$	Design temperature ($\left.{ }^{\circ} \mathrm{C}\right)$ DT	Time to DT (years)	$\begin{gathered} \text { Maximum } \\ \text { temperature } \\ \left({ }^{\circ} \mathrm{C}\right) \text { Tmax } \end{gathered}$	$\begin{gathered} \text { Time to } \\ \substack{\text { Timax } \\ \text { (years) }} \end{gathered}$	$\begin{gathered} \text { Malfunctioning } \\ \text { temperature Tmal } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Time to Tma (years)	Typical field of application
1	60	49	80	1	95	100	Hot water supply ($60^{\circ} \mathrm{C}$)
2	70	49	80	1	95	100	Hot water supply ($70^{\circ} \mathrm{C}$)
4	$\begin{gathered} 20 \\ \text { followed by } 40 \\ \text { followed by } 60 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 20 \\ & 25 \end{aligned}$	70	2.5	100	100	Heating by radiant floor and low-temperature radiators
5	$\begin{aligned} & 20 \\ & \text { followed by } 40 \\ & \text { followed by } 80 \end{aligned}$	$\begin{aligned} & 14 \\ & 25 \\ & 10 \end{aligned}$	90	1	100	100	High temperature radiators

However, in order to facilitate the use of the pipes, they are also marked with the theoretical nominal pressure if they were to work at $20^{\circ} \mathrm{C}$ for 50 years.
Even if it is not marked on the pipe, it is advisable to know the SDR and the S:

- SDR is the relation between the outer diameter and the thickness of the pipe, according to the equation:

$\mathrm{SDR}=\varphi$ ext $/$ thickness

Sis a dimensionless number that classifies the piping according to ISO 4065 standard and indicates the relationship between the tangential tension (σ) and the working pressure (P) at a given temperature, according to:

6.4 HANDLING AND STORAGE

- Resistance to ultraviolet rays (UV)

PPR should not be exposed to solar radiation. Even when stabilised against this radiation, its continuous exposure causes material degradation, thus accelerating its ageing.

Resistance to low temperatures
At temperatures below $0^{\circ} \mathrm{C}$, PPR, being a crystalline material, becomes fragile. It is therefore important, especially during transport and handling, to avoid any kind of impact. However, once installed, its plasticity is capable of absorbing volume variations due to the freezing of the liquids flowing inside.

\square Arrangement of the pipes

It is important to try to ensure that the pipes are always horizontal and to try to avoid, as far as possible, their curvature in order to prevent deformations that make subsequent installation difficult.

\square Bending

Thanks to the plasticity of the pipes, they allow a certain curvature. The maximum radius of curvature is 8 times its diameter. If bending is necessary, hot air heaters can be used, never direct torch, as this could destroy the molecular structure of the pipe.

\square Threading

Conical plugs should be avoided in the female threaded terminals, as they could deteriorate the threads. Teflon or similar can be used in appropriate quantities to ensure tightness.

ANTILEGIONELLA TREATMENTS 6.5

Due to their characteristics, Repolen piping do not favour the cultivation of any type of microorganism or known bacteria. However, in cases where disinfection is required, Repolen pipes do not present any problems as long as the disinfection is carried out in accordance with current standards.

In accordance with the current standards, for the control and prevention of Legionella (UNE 100030) and with Royal Decree RD863/2003, the following disinfection methods are recommended:

- Chemical use in reservoirs

For cold water for human consumption, maximum concentrations of 20 to 30 ppm of free residual chlorine for a maximum of between 3 and 1 hour respectively for water at pH 7 inside the reservoirs.

- Chemical use in pipings

Disinfection with $50 \mathrm{mg} / \mathrm{l}$ of free chlorine for more than 12 hours can be carried out twice a year, or $150 \mathrm{mg} / \mathrm{l}$ of oxygen peroxide can be used for 24 hours; in both cases, the temperature should never exceed $30^{\circ} \mathrm{C}$.

- Thermal way

For domestic hot water (hot water system). $70^{\circ} \mathrm{C}$ or more for 2 hours
It is very important to note that the two methods should never be used together (the combination of high temperatures with high concentrations of
chlorine can damage installations)
In some places chlorine dioxide is widely used as a disinfectant, due to its low price and its high disinfectant effect. However, its use is not recommended since its high oxidation potential may eventually affect the installations (metallic or plastic).

RECYCLING - ENVIRONMENT 6.6

PPR REPOLEN's piping are made of 100% virgin materials (the standards do not authorise the use of recycled materials for drinking water) and they are also 100% recyclable.

They are also environmentally friendly materials since their contamination is purely visual.

INSTALLATION

7.1 EXPANSION CALCULATION

REPOLEN PP-R and PPR FASER pipings are subject to thermal expansion in exactly the same way as other construction materials. This makes it necessary to compensate for this lineal expansion when calculating the installation. Built-in piping absorbs this lineal expansion towards the inside.

There are several formulas according to ENV 12108. The calculation equation is as follows:
$\Delta \mathrm{L}=\mathrm{L} * \lambda * \Delta \mathrm{~T}$
where: ΔL is the increase in length of the pipe due to the effect of lineal expansion, in millimetres
L is the length of the pipe on which the lineal expansion is calculated, in metres
λ is the lineal expansion coefficient, in $\mathrm{mm} / \mathrm{m}^{\circ} \mathrm{C}$. Depends on the material
λ PPR $=0.15 \mathrm{~mm} / \mathrm{m}^{\circ} \mathrm{C}$
λ faser $=0.03 \mathrm{~mm} / \mathrm{m}^{\circ} \mathrm{C}$
ΔT, is the temperature difference between the transported fluid and the ambient temperature

These lineal expansions are to be calculated between fixed points or changes of direction. If there is little lineal expansion and the installation can absorb it, it is best to allow mobility at the ends. If this mobility cannot be allowed and there is little lineal expansion, dilating sleeves can be used. The most common is to make bows, either in loop (if the pipe allows, it is not very frequent) or in U shape.

Clamps marked as PF fix the pipe (anchoring), making its mobility not possible, while the PD, if available, only provide support (guide).

The equation used for the bow calculations is
$\mathrm{LB}=2 * \mathrm{LD}+\mathrm{LA}=\mathrm{k} * \sqrt{\mathrm{D} * \Delta \mathrm{~L}}$
where: LB is the total flexible arm
LD is the length of the transverse arm
LA is the length of the longitudinal arm $\quad \mathrm{LA}=0.5 \times \mathrm{LD}$
k is a material-specific constant, which for PPR is 20
D is the nominal diameter of the pipe

Example: A 8 m long pipe with a 25 mm diameter will be installed to transport water at $70^{\circ} \mathrm{C}$ in an environment with a temperature of $25^{\circ} \mathrm{C}$, approximately.

- Installations with single-layer PPR
$\Delta \mathrm{L}=8 * 0.15 *(70-25)=54 \mathrm{~mm}$
We'll have to compensate 54 mm
For calculating the bow:
$\mathrm{LB}=20 * \sqrt{25 * 54}=734.85 \cong 735 \mathrm{~mm}$
$\mathrm{LB}=2^{\star} \mathrm{LD}+0.5 * \mathrm{LD} \Rightarrow \mathrm{LD}={ }^{735} 2.5294 \mathrm{~mm}$
$\mathrm{LA}=294 * 0.5=147 \mathrm{~mm}$
That is, the bow will have two transversal arms of 294 mm each and one longitudinal arm of 147 mm
\square Installations with PPR REPOLEN

$$
\Delta \mathrm{L}=8 * 0.03 *(70-25)=10.8 \mathrm{~mm}
$$

Well have to compensate 10.8 mm
For calculating the bow:
$\mathrm{LB}=20 \star \sqrt{25 * 10.8}=328.63 \cong 329 \mathrm{~mm}$
$\mathrm{LB}=2 * \mathrm{LD}+0.5 * \mathrm{LD} \Rightarrow \mathrm{LD}={ }^{329}{ }_{2 . \overline{5}}$
$=131.6 \cong 132 \mathrm{~mm}$

$\mathrm{LA}=132 * 0.5=66 \mathrm{~mm}$

That is, the bow will have two transversal arms of 132 mm each one and one longitudinal of 66 mm

$\lambda=0,15 \mathrm{~mm} / \mathrm{m}^{\circ} \mathrm{C}$								
$\begin{gathered} \text { Piping } \\ \text { length }(\mathrm{m}) \end{gathered}$	Temperature difference Δ Tee (${ }^{\circ} \mathrm{C}$)							
	10	20	30	40	50	60	70	80
	Lineal expansion of PPR REPOLEN piping $\Delta 1$ (mm)							
0,1	0,15	0,3	0,45	0,6	0,75	0,9	1,05	1,2
0,2	0,3	0,6	0,9	1,2	1,5	1,8	2,1	2,4
0,3	0,45	0,9	1,35	1,8	2,25	2,7	3,15	3,6
0,4	0,6	1,2	1,8	2,4	3	3,6	4,2	4,8
0,5	0,75	1,5	2,25	3	3,75	4,5	5,25	6
0,6	0,9	1,8	2,7	3,6	4,5	5,4	6,3	7,2
0,7	1,05	2,1	3,15	4,2	5,25	6,3	7,35	8,4
0,8	1,2	3,6	3,6	4,8	6	7,2	8,4	9,6
0,9	1,35	2,7	4,05	5,4	6,75	8,1	9,45	10,8
1	1,5	3	4,5	6	7,5	9	10,5	12
2	3	6	9	12	15	18	21	24
3	4,5	9	13,5	18	22,5	27	31,5	36
4	6	12	18	24	30	36	42	48
5	7,5	15	22,5	30	37,5	45	52,5	60
6	9	18	27	36	45	54	63	72
7	10,5	21	31,5	42	52,5	63	73,5	84
8	12	24	36	48	60	72	84	96
9	13,5	27	40,5	54	67,5	81	94,5	108
10	20	40	60	80	100	120	140	160

$\begin{aligned} & \text { Piping } \\ & \text { length }(\mathrm{m}) \end{aligned}$	$\lambda=0,03 \mathrm{~mm} / \mathrm{m}^{\circ} \mathrm{C}$							
	Temperature difference Δ Tee (${ }^{\circ} \mathrm{C}$)							
	10	20	30	40	50	60	70	80
	Lineal expansion of REPOLEN piping PPR FASER $\Delta 1$ (mm)							
0,1	0,03	0,06	0,09	0,12	0,15	0,18	0,21	0,24
0,2	0,06	0,12	0,18	0,24	0,3	0,36	0,42	0,48
0,3	0,09	0,18	0,27	0,36	0,45	0,54	0,63	0,72
0,4	0,12	0,24	0,36	0,48	0,6	0,72	0,84	0,96
0,5	0,15	0,3	0,45	0,6	0,75	0,9	1,05	1,2
0,6	0,18	0,36	0,54	0,72	0,9	1,08	1,26	1,44
0,7	0,21	0,42	0,63	0,84	1,05	1,26	1,47	1,68
0,8	0,24	0,44	0,72	0,96	1,2	1,44	1,68	1,92
0,9	0,27	0,54	0,81	1,08	1,35	1,62	1,89	2,16
1	0,3	0,6	0,9	1,2	1,5	1,8	2,1	2,4
2	0,6	1,2	1,8	2,4	3	3,6	4,2	4,8
3	0,9	1,8	2,7	3,6	4,5	5,4	6,3	7,2
4	1,2	2,4	3,6	4,8	6	7,2	8,4	9,6
5	1,5	3	4,5	6	7,5	9	10,5	12
6	1,8	3,6	5,4	7,2	9	10,8	12,6	14,4
7	2,1	4,2	6,3	8,4	10,5	12,6	14,7	16,8
8	2,4	4,8	7,2	9,6	12	14,4	16,8	19,2
9	2,7	5,4	8,1	10,8	13,5	16,2	18,9	21,6
10	3	6	9	12	15	18	21	24

Piping can be installed on trays or half rods, in a way that they can be used as support. As a result, when there are long sections exposed, the lineal expansions will ensure the piping movement on the tray but they will avoid the unsightly effect that lineal expansions may cause.

The recommended distances are:

Diameter	PPR single layer				Three-layer FASER			
	Distance for tray clamping		Distance for pipe tray damping		Distance for tey camping		Distance for proctey damping	
	Water $<30^{\circ} \mathrm{C}$	Water $>30^{\circ} \mathrm{C}$	Water $<30^{\circ} \mathrm{C}$	Water $30^{\circ} \mathrm{C}$	Water $<30^{\circ} \mathrm{C}$	Water $30^{\circ} \mathrm{C}$	Water $300^{\circ} \mathrm{C}$	Water $300^{\circ} \mathrm{C}$
16/20	1500	1000	500	200	1950	1300	650	260
25	1500	1200	500	300	1950	1560	650	390
32	1500	1200	750	400	1950	1560	975	520
40	1500	1200	750	600	1950	1560	975	780
50/63/75	1500	1500	750	750	1950	1950	975	975
90/110/125	2000	2000	1000	1000	2600	2600	1300	1300
160	2500	2500	1250	1250	3250	3250	1625	1625

It is very important that a riser with branches can absorb the lineal expansions without loading tension on the branches. According to the ENV 12108 , the recommended distance between two guiding clamps or between a guiding and an anchoring clamp is:

Outer diameter (mm)	$\mathrm{L}^{*}(\mathrm{~mm})$							
	PPR single layer				Three-layer FASER			
	$\begin{aligned} & \text { Pipes that permit length } \\ & \text { variations } \end{aligned}$		Pipes that do not permit length variations		$\begin{aligned} & \text { Pipes that permit length } \\ & \text { variations } \end{aligned}$		Pipes that do not permit length variations	
	Cold water	Hot water						
16	750	400	600	250	975	520	780	325
20	800	500	700	300	1040	650	910	390
25	850	600	800	350	1105	780	1040	455
32	1000	650	900	400	1300	845	1170	520
40	1100	800	1100	500	1430	1040	1430	650
50	1250	1000	1250	600	1625	1300	1625	780
63	1400	1200	1400	750	1820	1560	1820	975
75	1500	1300	1500	900	1950	1690	1950	1170
90	1650	1450	1650	1100	2145	1885	2145	1430
110	1900	1600	1850	1300	2470	2080	2405	1690
125	2100	1850	2000	1400	2730	2405	2600	1820
160	2500	2300	2300	1800	3250	2990	2990	2340

The thermal conductivity coefficient of PPR is $0.24 \mathrm{~W} / \mathrm{mK}$. If we compare it with copper ($384 \mathrm{~W} / \mathrm{mK}$) or iron (58 W / mK), we will understand that with PPR REPOLEN pipes the problem of condensation is almost non-existant.

However, according to RITE, all installations containing fluids refrigerated below room temperature or above $40^{\circ} \mathrm{C}$ must carry an insulator with a thickness (conductivity of the $0.04 \mathrm{~W} /$ mK isolator), must conform with the figures in the following tables in order to avoid condensation:

Outer diameter ofthe pipe to be lined	Maximum temperature of the fluid (${ }^{\circ} \mathrm{C}$)					
	Hot fuids inside the building			Hot fluids outside the building		
	$40<T<60$	$60<T<100$	$100<T<180$	$40<T<60$	60<T<100	$100<$ T < 180
$\varphi<35$	25	25	30	35	35	40
$35<\varphi<60$	30	30	40	40	40	50
$60<\varphi<90$	30	30	40	40	40	50
$90<\varphi<140$	30	40	50	40	50	60
$140<\varphi$	35	40	50	45	50	60

Outer diameter of the pipe to be lined (mm)	Maximum temperature of the fluid (${ }^{\circ} \mathrm{C}$)					
	Cold fuids inside the building			Cold fuids outside the building		
	$40<T<60$	60<T<100	$100<\mathrm{T}<180$	$10<\mathrm{T}<0$	$0<T<10$	$\mathrm{T}>10$
$\varphi<35$	30	20	20	50	40	40
$35<\varphi<60$	40	30	20	60	50	40
$60<\varphi<90$	40	30	30	60	50	50
$90<\varphi<140$	50	40	30	70	60	50
$140<\varphi$	50	40	30	70	60	50

If piping networks operation is continuous through the whole year, 5 mm must be added to the insulation thicknesses indicated in the tables.

For pipes with an outer diameter equal or less than 20 mm and a length of less than 5 m , from their connection to the general up to the terminal, which are embedded in partitions or floors, or within internal conduits, the insulation thickness should reach 10 mm .

If insulators with a different thermal conductivity than that given as a reference are used, the thickness is calculated using the following equation:

$$
\mathrm{d}=1_{2} *\left\{\mathrm{e}^{\text {Mrefe }^{\ln } \mathrm{d}+2, \text { dref } / \mathrm{D}}-1\right\}
$$

where: d is the thickness of the new insulator
D is the outer diameter of the pipe to be lined
λ is the thermal conductivity of the new insulator $(\mathrm{W} / \mathrm{mK})$
λ ref is the thermal conductivity of the insulator for which the tables were calculated ($0.04 \mathrm{~W} / \mathrm{mK}$)
dref is the thickness given by the tables for the referenced insulating material

Example: You want to line a pipe with a 75 mm diameter that will run inside a building that will carry water at a temperature of $80^{\circ} \mathrm{C}$, and you would like to use an insulator with a thermal conductivity of $0.037 \mathrm{~W} / \mathrm{mK}$:
$\mathrm{D}=75 \mathrm{~mm}$
$\lambda=0.037 \mathrm{~W} / \mathrm{mK}$ λ ref $=0.04 \mathrm{~W} / \mathrm{mK}$

According to the table, if we match row $60<\mathrm{D}<90$ with column $60<\mathrm{T}<100$, dref $=30 \mathrm{~mm}$

$$
\mathrm{d}=75 / 2 *\left\{\mathrm{e}^{0.037 / 0.04 * \ln 75+2.30 / 75}-1\right\}=27.1 \mathrm{~mm}
$$

7.4 START UP HYDRAULIC TEST

WATER HAMMER

When a liquid is flowing through a piping at a constant speed and at a given time any element on the installation is operated (a valve is closed or opened, variation of a pump's speed, etc) an overpressure is caused, resulting in an unbalance in the fluidity speed of the liquid that alters flows and pressures in the different points of the pipeline. This overpressure is called water hammer and must be added to the working or service pressure.

Pressure and flow rate variations that result in a water hammer spread throughout the liquid mass in a wave-like motion. Wave propagation velocity is called celerity and is according to the water modulus of elasticity whose value varies according to the temperature and modulus of elasticity of the piping material.

The lower the value of the modulus of elasticity of the piping material, the lower the celerity and the overpressure value that can take place in the piping. It is therefore advisable to use polyethylene piping, due to their low modulus of elasticity, so as in the same operating conditions, they result in pressures that are much lower than those that would be produced with the use of classic materials, which are considerably more rigid.

Calculation of the overpressure by water hammer can be done using Michaud's equation:

$$
\Delta \mathrm{H}= \pm \frac{2 \star \mathrm{~L} * \mathrm{~V}}{\mathrm{~g} * \mathrm{~T}}
$$

for
$T>\frac{2 \star L}{a}$

If: $\Delta \mathrm{F}=$ increase of pressure or height, or water hammer (overpressure in m.w.c.)
$a=$ wave propagation velocity or celerity in m / s
$=$ water velocity in a constant speed of m / s
$L=$ piping length in m
$\mathrm{g}=$ acceleration of gravity in $\mathrm{m} / \mathrm{s}^{2}$
$\mathrm{T}=$ stopping manoeuvre time in s

The celerity is calculated with the equation:
$a=\frac{9900}{\sqrt{48.3+K_{c} * D_{m} / e}}$

$$
\mathrm{K}_{\mathrm{c}}=\frac{10^{10}}{\mathrm{E}}
$$

If: $\mathrm{Kc}=$ dimensionless indicator
$\mathrm{E}=$ piping modulus of elasticity in $\mathrm{kg} / \mathrm{m}^{2}\left(10^{8}\right.$ for PE$)$
In the case of very long pipelines, the water hammer does not reach its maximum value at the closing end (or point of change of direction), but at a generic point inside the pipe. In this case the Allievi equation is used:

$$
\Delta \mathrm{H}= \pm \frac{\mathrm{a}{ }_{\star} \mathrm{v}}{\mathrm{~g}}
$$

if
$\mathrm{T}<\frac{2{ }_{\star} \mathrm{L}}{\mathrm{a}}$

The water hammer can be mitigated in different ways

- Check valves. They are installed in the impulsions to protect in group of pumping and the emptying of the piping through the pump. They can also be placed on the pipeline operating pressure.
Flywheel. Or pumping group stop delayer. By means of a flywheel attached to the motor shaft.
- Air tank. A tank attached to the piping in which there is water and air under pressure. This air absorbs the pressure variations in the
pipeline. Requires maintenance as air dissolves in water over time. - Surge tank. A vertical tank attached to the piping and higher than the equivalent pressure the piping can withstand.
Air release valves. Prevents cavitation at high points in the installation.
- Safety valves. If there is a possibility of cavitation leading to strong overpressure.

7.6 PRESSURE DROP

REPOLEN piping have significantly lower pressure drops than piping made of other materials, such as copper thanks to its very low roughness coefficient, 0.007 for PPR, 0.011 for clean copper, 0.025 for clean brass. It should be considered that plastic materials do not rust, no foulings are produced, so that the roughness of the pipe virtually does not vary (depending on the use given to the pipe, fluid transported, disinfection treatments, etc.). For example, iron piping start from a roughness of 0.25 , which over time can even reach 4 .

Pressure drops in installations are due to the rubbing of the liquid against the walls of the pipe and to those coming from obstacles in the installation (tees, elbows, reducers, branches, etc)

The pressure drops of REPOLEN pipes with a water temperature of $10^{\circ} \mathrm{C}$ are indicated in the following tables. At higher temperatures, losses are slightly lower.

REPOLEN SDR 6
The first value corresponds to the pressure drop in mm / m.w.c. and the second to the average speed in m / s.

Flow rate		162.7	20×3.4	25x4.2	3225.4	φ - REPOLEN SDR 6			75x12.5	90×15	100x18.4	${ }^{125250.8}$
y/s	kgh					40667	50×84	${ }_{63 \times 10} 5$				
0.02	70	10	2	0.9								
		0.22	0.14	0.09								
0.04	140	33	8	3	1							
		0.44	0.29	0.18	0.11							
0.05	180	52	13	4	2							
		0.57	0.37	0.23	0.14							
0.06	220	73	19	6	2							
		0.7	0.45	0.28	0.17							
0.08	290	118	30	10	4	1.5	0.5					
		0.92	0.59	0.37	0.23	0.15	0.09					
0.1	360	164	42	15	6	2	0.7					
		1.11	0.71	0.45	0.28	0.18	0.11					
0.12	430	234	61	21	8	3	1.07	0.33				
		1.36	0.88	0.55	0.34	0.22	0.14	0.09				
0.14	510		83	29	11	4	1.44	0.45				
			1.04	0.66	0.4	0.26	0.16	0.1				
0.16	580		104	37	14	5	1.8	0.56				
			1.18	0.75	0.46	0.29	0.19	0.12				
0.18	655		129	45	18	6	2.02	0.7				
			1.34	0.84	0.52	0.33	0.21	0.13				
0.2	730		156	55	22	7.5	2.69	0.84				
			1.49	0.94	0.58	0.37	0.24	0.15				
0.23	830		290	69	27	9	3.3	1				
			1.65	1.07	0.66	0.42	0.27	0.17				
0.25	900		353	85	33	11	4.1	1.3				
			1.83	1.2	0.74	0.47	0.3	0.19				

Flow rate		φ - REPOLEN SDR 6										
1/s	kg/h	1627	20×3.4	254.2	32554	40×67	50x8.4	63×10.5	75812.5	99×15	110×18.4	125520.8
0.3	1080			110	43	15	5.3	1.6				
				1.39	0.85	0.54	0.35	0.22				
0.35	1280			149	59	20	7.1	2.2				
				1.65	1.01	0.64	0.41	0.26				
0.4	1430			270	71	24	8	2.7				
				1.85	1.13	0.72	0.46	0.29				
0.45	1605				87	30	10	3.4				
					1.27	0.81	0.52	0.32				
0.5	1805				107	36	13	4.2				
					1.43	0.91	0.58	0.36				
0.55	2005				135	44	15	5				
					1.55	1.01	0.65	0.4				
0.65	2155				172	50	17	5.7				
					1.7	1.08	0.69	0.43				
0.7	2530				225	66	23	7.6				
					1.98	1.27	0.82	0.51				
0.75	2705					74	26	8.5				
						1.36	0.87	0.54				
0.8	2280					83	29	9.5				
						1.45	0.93	0.58				
0.85	3005					89	31	10				
						1.51	0.97	0.61				
0.9	3255					103	36	11				
						1.63	1.05	0.66				
1	3600					143	43	14	7.9	2.8		
						1.8	1.16	0.73	0.5	0.35		
1.2	4320					198	59	19	9.2	3.9		
						2.16	1.4	0.87	0.61	0.42		
1.3	4680						66	22	10.6	4.5		
							1.49	0.93	0.66	0.46		
1.4	5040						76	25	12.1	5.1		
							1.62	101	0.71	0.5		
1.6	5760						14	32	15.3	6.4		
							1.85	1.16	0.81	0.57		
1.8	6480						141	40	18.8	7.9		
							2.08	1.32	0.92	0.64		
2	7200						170	48	22.7	9.5	3.7	
							2.31	1.46	102	0.71	0.48	
2.2	7920							57	26.9	11.3	4.4	
								1.6	1.12	0.78	0.52	
2.4	8640							66	31.4	13.1	5.1	
								1.74	1.22	0.85	0.57	
2.6	9360							76	36.1	15.1	5.9	3.1
								1.88	1.32	0.92	0.62	0.48

Flow rate		φ - REPOLEN SDR 6										
1/s	kgh	16.27	20×3.4	25x4.2	3225.4	40667	50×84	63×10.5	75×12.5	90×15	110×18.4	125×20.8
2.8	10080							87	41.2	17.3	6.7	3.6
								2.02	1.43	0.99	0.67	0.51
3	10800							111.3	46.6	19.5	7.5	4.1
								2.17	1.53	1.06	0.71	0.55
3.5	12600							149	61.4	25.7	9.9	5.3
								2.53	1.78	1.24	0.83	0.64
4	14400								77.9	32.6	12.6	6.7
									2.04	1.41	0.95	0.73
4.5	16200								96.2	40.2	15.5	8.3
									2.29	1.59	1.07	0.82
5	18000								116.2	48.5	18.7	10
									2.55	1.77	1.19	0.92
6	21600								161.1	67.2	25.9	13.9
									3.06	2.12	1.43	1.1
7	25200									88.6	34.2	18.3
										2.48	1.66	1.28
8	28800									112.7	43.4	23.2
										2.83	1.9	1.46
9	32400									139.3	53.6	28.7
										3.18	2.14	1.65
10	36000										64.8	34.7
											2.38	1.83
11	39600										77	41.1
											2.61	2.01
12	43200										90	48.1
											2.85	2.2
13	46800										104	55.6
											3.09	2.38
15	54000											71.9
												2.75
17	61200											92.1
												3.11

Flow rate		φ - REPOLEN SDR 7.4									
1/s	kg/h	25×3.5	32×4.4	40×5.5	5086.9	63×8.6	75x10,3	90×12.3	100x15.1	125x17.1	160x21.9
0.1	360	16.9	5.2								
		0.39	0.24								
0.15	540	33.8	10.21								
		0.59	0.35								
0.2	720	55.4	16.7								
		0.79	0.47								
0.25	864	81.4	24.5								
		0.98	0.59								
0.3	1080	111.6	33.6	11.7							
		1.18	0.71	0.45							
0.35	1260	145.9	43.9	15.3							
		1.38	0.83	0.53							
0.4	1440	184.2	55.3	19.2	6.7						
		1.57	0.95	0.61	0.39						
0.45	1620	226.3	67.9	23.6	8.3						
		1.77	1.06	0.68	0.44						
0.5	1800	272.2	81.5	28.3	9.9						
		1.96	1.18	0.76	0.49						
0.55	1980	321.7	96.3	33.4	11.7						
		2.16	1.3	0.83	0.53						
0.6	2160		112.2	38.9	13.6						
			1.42	0.91	0.58						
0.65	2340		129	44.7	15.6	5.2					
			1.54	0.98	0.63	0.4					
0.7	2520		147	50.9	17.8	6					
			1.66	1.06	0.68	0.439					
0.75	2700		165.9	57.4	20	6.7					
			1.77	1.14	0.73	0.46					
0.8	2880		185.9	64.3	22.4	7.5					
			1.89	1.21	0.78	0.49					
0.85	3060		206.8	71.5	24.9	8.3					
			2.01	1.29	0.83	0.52					
0.9	3240		228.7	79.1	27.6	9.2					
			2.13	1.36	0.87	0.55					
1	3600			95.2	33.1	11.1	4.9				
				1.51	0.97	0.61	0.43				
1.2	4320			131.2	45.6	15.2	6.7				
				1.82	1.17	0.73	0.52				
1.4	5040			172.3	59.9	20	8.8	3.7			
				2.12	1.36	0.86	0.61	0.42			

Flow rate		φ - REPOLEN SDR 7.4									
1/s	kg/h	25×3.5	32×4.4	40×5.5	50×6.9	6388.6	75x10.3	90×12.3	100x15.1	125x17.1	160x21.9
1.6	5760				75.8	25.2	11.1	4.7			
					1.55	0.98	0.69	0.48			
1.8	6480				9.3	31.1	13.6	5.7			
					1.75	1.1	0.78	0.54			
2	7200				112.5	20	16.4	6.9			
					1.94	1.22	0.87	0.6			
2.2	7920				133.2	44.3	19.4	8.2			
					2.14	1.35	0.95	0.66			
2.4	8640					51.6	22.7	9.05			
						1.47	1.04	0.72			
2.6	9360					69.5	26.1	11			
						1.59	1.13	0.78			
2.8	10080					67.9	29.8	12.5	4.6		
						1.71	1.21	0.84	0.56		
3	10800					76.7	33.6	14.1	5.4	2.9	
						1.84	1.3	0.9	0.6	0.46	
3.5	12600					100.9	44.2	18.6	7.1	3.8	
						21.4	1.52	1.05	0.7	0.54	
4	14400					128	56	23.5	8.9	4.8	
						2.45	1.73	1.21	0.8	0.62	
4.5	16200					158	69.1	29	11	5.9	
						2.76	1.95	1.36	0.9	0.69	
5	18000						83.4	35	13.3	7.1	2.2
							2.17	1.51	1	0.77	0.47
5.5	19800						98.9	41.5	15.7	8.4	2.6
							2.38	1.66	1.11	0.85	0.52
6	21600						115.6	48.4	18.4	9.8	3
							2.6	1.81	1.21	0.93	0.57
6.5	23400							55.9	20.6	11.3	3.5
								1.96	1.29	1	0.61
7	25200							63.8	24.2	12.9	4
								2.11	1.41	1.08	0.66
7.5	27000							72.2	27.3	14.6	4.5
								2.26	1.51	1.16	0.71
8	28800							81	30.7	16.3	5
								2.41	1.61	1.24	0.75
9	32400							100	97.9	20.2	6.2
								2.71	1.81	1.39	0.85
10	36000								45.8	24.4	7.5
									2.01	1.54	0.94
11	39600								54.3	28.9	8.9
									2.21	1.7	1.04
12	43200								63.5	33.8	10.4
									2.41	1.85	1.13

Flow rate		φ - REPOLEN SDR 7.4									
1/s	kg/h	25x3.5	32×4.4	40x5.5	50×6.9	63×8.6	75510.3	90x12.3	110x15.1	125517.1	160×21.9
13	46800								73.3	39	12
									2.61	2.01	1.23
14	50400									44.5	13.6
										2.16	1.32
15	54000									50.4	15.4
										2.32	141
16	57600									56.6	17.1
										2.47	1.5
17	61200									63.1	19.3
										2.63	1.6
20	72000										25.9
											1.89
30	108000										53.8
											2.83

- REPOLEN SDR 9

The first value corresponds to the pressure drop in $\mathrm{mm} / \mathrm{m} . w . c$. and the second to the average speed in m / s.

Flow rate		φ - REPOLEN SDR 9					
1/s	kg/h	32x2.9	40x3.7	50x4.6	63×5.8	75x6. 8	90×8.2
0.1	360	3,78	1,33				
		0,21	0,13				
0,15	540	7,49	2,63				
		0,31	0,2				
0.2	720	12,22	4,28	1,49	0,51		
		0,41	0,26	0,17	0,11		
0.3	1080	24,51	8,55	2,97	1,01		
		0,62	0,4	0,25	0,16		
0.4	1440	40,33	14,03	4,86	1,65		
		0,83	0,53	0,34	0,21		
0.5	1800	59,45	20,65	7,14	2,42		
		1,04	0,66	0,42	0,27		
0,6	2160	81,74	28,35	9,79	3,31		
		1,24	0,79	0,51	0,32		
0.7	2520	107,07	37,09	12,79	4,32		
		1,45	0,93	0,59	0,37		
0.8	2880	135,36	46,85	16,14	5,44		
		1,66	1,06	0,68	0,43		
0.9	3240	166,52	57,6	19,83	6,68		
		1,86	1,19	0,76	0,48		
1	3600	200,51	69,3	23,84	8,03		
		2,07	1,32	0,85	0,53		

Flow rate		φ - REPOLEN SDR 9					
1/s	kgh	32x.9	40×3.7	50x4.6	63×5.8	75x6. 8	90x8.2
1,1	3960	237,25	81,95	28,18	9,48		
		2,28	1,46	0,93	0,59		
1.2	4320	276,7	95,53	32,82	11,04		
		2,48	1,59	1,01	0,64		
1.3	4680	318,82	110,02	37,78	12,7		
		2,69	1,72	1,1	0,7		
1.4	5040	363,57	125,4	43,05	14,46		
		2,9	1,85	1,18	0,75		
1,5	5400	410,9	141,67	48,61	16,32		
		3,11	1,99	1,27	0,8		
1.6	5760	460,8	158,82	54,47	18,28		
		3,31	2,12	1,35	0,86		
1,7	6120	513,22	176,82	60,63	20,34		
		3,52	2,25	1,44	0,91		
1.8	6480	568,14	195,68	67,07	22,49		
		3,73	2,38	1,52	0,96		
1,9	6840	625,54	215,39	73,8	24,74		
		3,93	2,52	1,61	1,02		
2	7200	685,38	235,93	80,81	27,08	11,71	
		4,14	2,65	1,69	1,07	0,75	
2.2	7920		279,49	95,68	32,05	13,84	
			2,91	1,86	1,18	0,83	
2.4	8640		326,3	111,66	37,38	16,14	
			3,18	2,03	1,28	0,9	
2.6	9360		376,33	128,72	43,07	18,59	
			3,44	2,2	1,39	0,98	
2.8	10080		429,51	146,85	49,11	21,19	
			3,71	2,37	1,5	1,05	
3	10800		485,81	166,04	55,51	23,95	10,07
			3,97	2,54	1,6	1,13	0,78
3.5	12600			218,56	73	31,47	13,22
				2,96	1,87	1,32	0,91
4	14400			277,42	92,6	39,89	16,75
				3,38	2,14	1,5	1,05
4.5	16200			342,49	114,25	49,2	20,64
				3,81	2,41	1,69	1,18
5	18000				137,91	59,36	24,89
					2,67	1,88	1,31
6	21600				191,11	82,2	34,45
					3,21	2,26	1,57
7	25200				251,96	108,31	45,36
					3,74	2,63	1,83
8	28800					137,6	57,59
						3,01	2,09

Flow rate		φ - REPOLEN SDR 9					
1/s	kg/4	32x. 29	40x3.7	50x4.6	63×5.8	75×6.8	90×8.2
9	32400					169,99	71,12
						3,38	2,35
10	36000					205,44	85,92
						3,76	2,6
11	39600						101,95
							2,87
12	43200						119,22
							3,14
13	46800						137,68
							3,4
14	50400						157,34
							3,66

■ REPOLEN SDR 11
The first value corresponds to the pressure drop in $\mathrm{mm} / \mathrm{m} . \mathrm{w}$. . . and the second to the average speed in m / s.

Flow rate		φ - REPOLEN SDR 11								
I/s	kgh	32x2.9	40x3.7	50x4.6	63x5.8	75×6.8	90x8.2	110x10	125x11.4	160×14.6
0.1	360	2.9								
		0.19								
0.16	576	6.5								
		0.3								
0.2	720	9.4								
		0.37								
0.25	864	13.8								
		0.46								
0.3	1080	18.9	6.7							
		0.56	0.36							
0.35	1260	24.7	8.8							
		0.65	0.42							
0.4	1440	31.1	11.1	3.8						
		0.74	0.48	0.31						
0.45	1620	38.1	13.6	4.7						
		0.83	0.6	0.34						
0.5	1800	45.8	16.3	5.6						
		0.93	0.6	0.38						
0.55	1980	54.1	19.2	6.6						
		1.02	0.66	0.42						
0.6	2160	63	22.3	7.7						
		1.11	0.72	0.46						

Flow rate		φ - REPOLEN SDR 11								
1/s	kg/h	32×2.9	40x3.7	50x46	${ }_{63 \times 5.8}$	75x6.8	9008.2	110x10	125511.4	160×14.6
0.65	2340	72.1	25.7	8.9	3					
		1.21	0.78	0.5	0.31					
0.7	2520	82.5	29.2	10.1	3.4					
		1.3	0.84	0.54	0.34					
0.75	2700	93.1	33	11.4	3.8					
		1.39	0.9	0.57	0.36					
0.8	2880	104.2	36.9	12.7	4.3					
		1.48	0.96	0.61	0.39					
0.85	3060	116	41	14.1	4.7					
		1.58	1.02	0.65	0.41					
0.9	3240		45.3	15.6	5.2					
			1.08	0.69	0.43					
1	3600		54.5	18.8	6.3	2.7				
			1.2	0.76	0.48	0.34				
1.2	4320		75.2	25.8	8.6	3.7				
			1.44	0.92	0.58	0.41				
1.4	5040		98.7	33.9	11.3	4.9	2.1			
			1.68	1.07	0.67	0.47	0.33			
1.6	5760			42.9	14.3	6.1	2.6			
				1.22	0.77	0.54	0.38			
1.8	6480			52.8	21.1	9.1	3.8			
				1.38	0.96	0.68	0.47			
2	7200			63.6	25	9.1	3.8			
				1.53	1.06	0.68	0.47			
2.2	7920			73.2	25	10.7	4.5			
				1.68	1.06	0.74	0.52			
2.4	8640				29.2	12.5	5.3			
					1.16	0.81	0.56			
2.6	9360				33.6	14.4	6.0			
					1.25	0.9	0.6			
2.8	10080				38.3	16.4	6.9	2.7		
					1.35	0.9	0.7	0.4		
3	10800				43.3	18.5	7.8	3	1.6	
					1.45	1.01	0.71	0.47	0.37	
3.5	12600				57	24.4	10.3	3.9	2.1	
					1.69	1.18	0.9	0.55	0.43	
4	14400				72.2	30.9	13	5	2.7	
					1.93	1.4	0.9	0.6	0.5	
4.5	16200					38.1	16	6.1	3.3	
						1.5	1.1	0.7	0.5	
5	18000					46	19.3	7.4	4	1.2
						1.69	1.18	0.79	0.61	0.37
5.5	19800					54.5	22.9	8.8	4.8	1.5
						1.86	1.29	0.86	0.67	0.41

The pressure drop stipulated for the fittings is:

Description	Scheme	Resistance coefficient (r)
Sleeve		0.25
Sleeve Thread - Female	\square	0.5
Sleeve Thread - Male		0.7
One diameter reducer		0.4
Two diameter reducer		0.5
Three diameter reducer		0.6
Four diameter reducer	-	0.7
Five diameter reducer		0.8
Six diameter reducer		0.9
90° Elbow		1.2
90° Elbow Thread - Male	${ }_{4}^{\omega}$	1.6
90° Elbow Thread - Female	${ }^{\mathrm{m}}$	1.4
45° Elbow	1	0.6
Divergent Flow Tee	$\underset{\rightarrow}{\rightarrow}$	1.8
Convergent Flow Tee	$\underset{\rightarrow}{\rightarrow}$	1.3
Opposition Tee with Divergent Flow	$\underset{\leftarrow}{\stackrel{+}{4}}$	2.2
Opposition Tee with Convergent Flow	$\underset{\rightarrow}{\rightarrow}+$	4.2
Reducing tee	The resul	with the reducer
Female thread tee	$\underset{\rightarrow}{\neq 1}$	1.6
Tee Thread - Male	$\underset{\rightarrow}{\exists} \underset{\square}{\xi}$	1.8

- Example

Assume an installation with 10 linear meters of REPOLEN pipe and a $25 \times 4.2 \mathrm{~mm}$ diameter, in which there are 4 sleeves, 390° elbows, 2 tees and a female threaded sleeve, which is intended to transport $0.351 /$ s of water at $10^{\circ} \mathrm{C}$

The total pressure drop will be the pressure drop of the piping, plus that of the fittings:

```
H=Ht+Ha
```

where: $\quad H$ is the total pressure drop in mm.w.c.
Ht is the pressure drop of the piping in mm.w.c.
Ha is the pressure drop of the fittings in mm.w.c.
For calculating the pressure drop of the piping it is necessary to consult the previous tables, so we see that for the chosen pipe and $0.35 / /$ s, we have a water velocity of $1.65 \mathrm{~m} / \mathrm{s}$ and a pressure drop of 149 mm .w.c. Since we have 10 linear meters:

$\mathrm{Ht}=149 * 10=1490$ mm.w.c.

The pressure drop of various fittings is calculated by the equation

$$
\mathrm{Ha}=\Sigma \mathrm{r} * \mathrm{v}^{2} * \gamma^{\prime}{ }_{2 * \mathrm{~g}}
$$

where: r is the coefficient of resistance of the fitting
v is the velocity of the transported fluid in m / s
Y is the specific weight of the fluid transported. Being water is $1 \mathrm{~kg} / \mathrm{l}$ g is the acceleration of gravity, $9.8 \mathrm{~m} / \mathrm{s}$
$\mathrm{Ha}=(4 * 0.25+3 * 1.2 * 2 * 1.8+0.5) * 1.65^{2} * \frac{1}{2} 2 * 9.8=8.7 * 2.72 * 0.05=1.183$ m.c.a. $=1183 \mathrm{~mm}$. w.c.
$H=1490+1183=2673 \mathrm{~mm}$. w.c.

7.7 PEAK FLOW RATE

Determination of peak flow rate Vs from the sum of flows VVR for residential buildings
acc. to DIN 1988 Teil 3 VS $=0.682-(\Sigma V R) 0.45-0.7[1 / \mathrm{s}]$

2VR	vs	EVR	vs	EVR	vs	EVR	vs	EVR	vs	2VR	vs	2VR	vs	EVR	vs
0,03	0,00	1,02	0,55	2,02	0,80	3,02	0,98	4,02	1,14	5,10	1,28	10,10	1,79	15,10	, 17
0,04	0,02	1,04	0,55	2,04	0,80	3,04	0,98	4,04	1,14	5,20	1,29	10,20	1,80	15,20	2,18
0,06	0,05	1,06	0,56	2,06	0,80	3,06	0,99	4,06	1,14	5,30	1,30	10,30	1,81	15,30	2,19
0,07	0,07	1,08	0,57	2,08	0,81	3,08	0,99	4,08	1,14	5,40	1,32	10,40	1,82	15,40	2,19
0,08	0,08	1,10	0,57	2,10	0,81	3,10	0,99	4,10	1,15	5,50	1,33	10,50	1,82	15,50	2,20
0,09	0,09	1,12	0,58	2,12	0,82	3,12	1,00	4,12	1,15	5,60	1,34	10,60	1,83	15,60	2,21
0,10	0,10	1,14	0,58	2,14	0,82	3,14	1,00	4,14	1,15	5,70	1,35	10,70	1,84	15,70	2,21
0,13	0,13	1,16	0,59	2,16	0,82	3,16	1,00	4,16	1,16	5,80	1,36	10,80	1,85	15,80	2,22
0,15	0,15	1,18	0,59	2,18	0,83	3,18	1,01	4,18	1,16	5,90	1,38	10,90	1,86	15,90	2,23
0,20	0,19	1,20	0,60	2,20	0,83	3,20	1,01	4,20	1,16	6,00	1,39	11,00	1,87	16,00	2,23
0,22	0,21	1,22	0,61	2,22	0,84	3,22	1,01	4,22	1,16	6,10	1,40	11,10	1,87	16,10	2,24
0,24	0,22	1,24	0,61	2,24	0,84	3,24	1,02	4,24	1,17	6,20	1,41	11,20	1,88	16,20	2,25
0,26	0,23	1,26	0,62	2,26	0,84	3,26	1,02	4,26	1,17	6,30	1,42	11,30	1,89	16,30	2,25
0,28	0,24	1,28	0,62	2,28	0,85	3,28	1,02	4,28	1,17	6,40	1,43	11,40	1,90	16,40	2,26
0,30	0,26	1,30	0,63	2,30	0,85	3,30	1,03	4,30	1,17	6,50	1,44	11,50	1,91	16,50	2,27
0,32	0,27	1,32	0,63	2,32	0,86	3,32	1,03	4,32	1,18	6,60	1,45	11,60	1,91	16,60	2,27
0,34	0,28	1,34	0,64	2,34	0,86	3,34	1,03	4,34	1,18	6,70	1,47	11,70	1,92	16,70	2,28
0,36	0,29	1,36	0,64	2,36	0,86	3,36	1,04	4,36	1,18	6,80	1,48	11,80	1,93	16,80	2,29
0,38	0,30	1,38	0,65	2,38	0,87	3,38	1,04	4,38	1,19	6,90	1,49	11,90	1,94	16,90	2,29
0,40	0,31	1,40	0,65	2,40	0,87	3,40	1,04	4,40	1,19	7,00	1,50	12,00	1,95	17,00	2,30
0,42	0,32	1,42	0,66	2,42	0,88	3,42	1,05	4,42	1,19	7,10	1,51	12,10	1,95	17,10	2,31
0,44	0,33	1,44	0,66	2,44	0,88	3,44	1,05	4,44	1,19	7,20	1,52	12,20	1,96	17,20	2,31
0,46	0,34	1,46	0,67	2,46	0,88	3,46	1,05	4,46	1,20	7,30	1,53	12,30	1,97	17,30	2,32
0,48	0,35	1,48	0,67	2,48	0,89	3,48	1,06	4,48	1,20	7,40	1,54	12,40	1,98	17,40	2,33
0,50	0,36	1,50	0,68	2,50	0,89	3,50	1,06	4,50	1,20	7,50	1,55	12,50	1,99	17,50	2,33
0,52	0,37	1,52	0,68	2,52	0,89	3,52	1,06	4,52	1,20	7,60	1,56	12,60	1,99	17,60	2,34
0,54	0,38	1,54	0,69	2,54	0,90	3,54	1,06	4,54	1,21	7,70	1,57	12,70	2,00	17,70	2,35
0,56	0,39	1,56	0,69	2,56	0,90	3,56	1,07	4,56	1,21	7,80	1,58	12,80	2,01	17,80	2,35
0,58	0,39	1,58	0,70	2,58	0,90	3,58	1,07	4,58	1,21	7,90	1,59	12,90	2,02	17,90	2,36
0,60	0,40	1,60	0,70	2,60	0,91	3,60	1,07	4,60	1,22	8,00	1,60	13,00	2,02	18,00	2,36
0,62	0,41	1,62	0,71	2,62	0,91	3,62	1,08	4,62	1,22	8,10	1,61	13,10	2,03	18,10	2,37
0,64	0,42	1,64	0,71	2,64	0,92	3,64	1,08	4,64	1,22	8,20	1,62	13,20	2,04	18,20	2,38
0,66	0,43	1,66	0,72	2,66	0,92	3,66	1,08	4,66	1,22	8,30	1,63	13,30	2,05	18,30	2,38
0,68	0,43	1,68	0,72	2,68	0,92	3,68	1,09	4,68	1,23	8,40	1,64	13,40	2,05	18,40	2,39
0,70	0,44	1,70	0,73	2,70	0,93	3,70	1,09	4,70	1,23	8,50	1,65	13,50	2,06	18,50	2,40
0,72	0,45	1,72	0,73	2,72	0,93	3,72	1,09	4,72	1,23	8,60	1,66	13,60	2,07	18,60	2,40
0,74	0,46	1,74	0,74	2,74	0,93	3,74	1,09	4,74	1,23	8,70	1,67	13,70	2,07	18,70	2,41
0,76	0,46	1,76	0,74	2,76	0,94	3,76	1,10	4,76	1,24	8,80	1,67	13,80	2,08	18,80	2,41
0,78	0,47	1,78	0,74	2,78	0,94	3,78	1,10	4,78	1,24	8,90	1,68	13,90	2,09	18,90	2,42
0,80	0,48	1,80	0,75	2,80	0,94	3,80	1,10	4,80	1,24	9,00	1,69	14,00	2,10	19,00	2,43
0,82	0,48	1,82	0,75	2,82	0,95	3,82	1,11	4,82	1,24	9,10	1,70	14,10	2,10	19,10	2,43
0,84	0,49	1,84	0,76	2,84	0,95	3,84	1,11	4,84	1,25	9,20	1,71	14,20	2,11	19,20	2,44
0,86	0,50	1,86	0,76	2,86	0,95	3,86	1,11	4,86	1,25	9,30	1,72	14,30	2,21	19,30	2,44
0,88	0,50	1,88	0,77	2,88	0,96	3,88	1,12	4,88	1,25	9,40	1,73	14,40	2,12	19,40	2,45
0,90	0,51	1,90	0,77	2,90	0,96	3,90	1,12	4,90	1,25	9,50	1,74	14,50	2,13	19,50	2,46
0,92	0,52	1,92	0,77	2,92	0,96	3,92	1,12	4,92	1,26	9,60	1,75	14,60	2,14	19,60	2,46
0,94	0,52	1,94	0,78	2,94	0,97	3,94	1,12	4,94	1,26	9,70	1,76	14,70	2,15	19,70	2,47
0,96	0,53	1,96	0,78	2,96	0,97	3,96	1,13	4,96	1,26	9,80	1,76	14,80	2,15	19,80	2,47
0,98	0,54	1,98	0,79	2,98	0,97	3,98	1,13	4,98	1,26	9,90	1,77	14,90	2,16	19,90	2,48
1,00	0,54	2,00	0,79	3,00	0,98	4,00	1,13	5,00	1,27	10,00	1,78	15,00	2,17	20,00	2,49

*This table is valid when the flow rate VR of the individual intake points is less than $0.51 / \mathrm{s}$.

Determination of peak flow rate Vs from the sum of flows SVR for residential buildings
acc. to DIN 1988 Teil 3 VS $=1.7-(\Sigma V R) 0.21-0.7[1 / \mathrm{s}]$

* This table is valid when the flow rate VR of the individual intake points is less than $0.51 / \mathrm{s}$.

7.8 INSTALLATIONS SIIING

According to CTE HS4, the flow rates to be taken into consideration are:

Equipment	Minimum instantaneous flow rate (1/s)		Nominal diameter of the coupling submain	
	Cold water	Hot water (Hot Water System)	Steel pipe (")	Copper or plastic pipe (mm)
Bathtub < 1.4 m	0.2	0.15	3/4	20
Bathtub>1.4 m	0.3	0.2	3/4	20
Bidet	0.1	0.065	1/2	12
Shower	0.2	0.1	1/2	12
Domestic sink	0.2	0.1	1/2	12
Non-domestic sink	0.3	0.2	3/4	20
Isolated tap	0.15	0.1	---	---
Garage tap	0.2	---	---	---
Toilet with cistern	0.1	---	1/2	12
Toilet with flushometer	1.25	---	1-1/2	25-40
Toilet	0.1	0.065	1/2	12
Laundry foom	0.2	0.1	---	---
Domestic washing machine	0.2	0.15	3/4	20
Industrial washing machine ($>8 \mathrm{~kg}$)	0.6	0.4	1	25
Washbasin	0.05	0.03	1/2	12
Domestic dishwasher	0.15	0.1	$1 / 2\left(\right.$ thread to ${ }^{3 / 4}$)	12
Industrial dishwasher (20 services)	0.25	0.2	3/4	20
Urinal with cistern	0.04	---	1/2	12
Urinal with timed tap	0.15	---	1/2	12
Landfill	0.2	---	3/4	20

\square The minimum pressures will be:
100 kPa for common taps
150 kPa for flushometers and heaters
The pressure at any point of consumption must not exceed 500 kPa .

The temperature at the Hot Water System points of consumption must be between 50 and $65^{\circ} \mathrm{C}$.
\square The installations will be sized by dividing the installation into sections and always taking into account the most unfavourable section (the one with the greatest pressure loss).
The calculation speed must be between 0.5 and $3.5 \mathrm{~m} / \mathrm{s}$ (for plastic piping).
\square The minimum supply diameters are

For the Hot Water System, the drive circuit is calculated in the same way as for cold water. For the return circuit, the flow rate will be estimated so that in the most distant tap, the temperature loss is a maximum of $3^{\circ} \mathrm{C}$ from the outlet of the accumulator or exchanger.

In any case, no less than $2501 / \mathrm{h}$ will be recirculated in each column. It must be considered that at least 10% of the supply water is recirculated. The minimum internal diameter of the return piping must be 16 mm .

The diameters on the recirculated flow rate are:

Piping diameter (")	Recirculated flow rate (l/h)
$1 / 2$	14
$3 / 4$	300
1	600
$11 / 4$	1100
$1 / 2$	1800
2	3300

ON-SITE RECOMMENDATIONS 7.9

Take into account the environmental conditions when welding, avoiding currents that could cause undesirable cooling
\square PPR REPOLEN pipes must never be exposed to direct sunlight, as they are not protected against ultraviolet radiation.

- In case of low temperatures, check the condition of the pipes' ends, in case any unintended impact could have occurred during handing or transport.
- PPR REPOLEN pipes can be installed in direct contact with any traditional building material.

Take special care with regard to lineal expansions, both in recessed installations and in exposed installations, to allow for movement and to place the fasteners where necessary and advisable.
In the case of buried installations, they must be placed at a 0.8 m depth if traffic will not run over them and at 1 m if it may run over them.

CONNECTION SYSTEMS

8.1 Thermofusion or socket welding connection
8.2 Butt weld connection
. 3 Electrofusion connectio
8.4 Flanged systems
8.5 Installation of branch systems
8.6 System repair

The main connection system are:
Thermofusion or socket welding (recommended option)

Electrofusion

Butt or mirror welding
Others: flanged fittings, threads, etc.

For most of these systems, there are a series of common points to keep in mind:

It is essential to maintain the cleanliness of the elements to be connected. Such cleaning should never be done using chemicals. Wiping off any dirt with a clean cloth would be enough. The cuts of the parts to be joined must be as parallel as possible to each other and as perpendicular as possible to the length of the pipe. If there is any burr, it is advisable to remove it before connecting the parts.
In processes where temperature is involved, it is important to ensure that materials with similar melting points are to be connected.
is necessary to consider the en place, since extreme temperatures could distort machine data in automatic welds, or even affect the elements to be joined. In the same way, it is necessary to avoid air currents that can make the connection difficult, since it may accelerate the partial cooling of the different elements.

8.1 THERMOFUSION OR SOCKET WELDING

The process consists of connecting a pipe and a fitting by applying heat on the external part of the pipe and the internal part of the fitting. To do this, the pipe is inserted into the heating matrix while another heating matrix is inserted into the fitting.

Once the corresponding time has elapsed (see time table), the matrices are removed and the pipe is inserted into the fitting, keeping the pressure for the indicated time

This type of welding guarantees a perfect pipe - fitting connection. The end result is a single part, eliminating the risk of leakage.
maintaining the pressure for the time indicated in the table. During this time, small alignment corrections can be made. When the bench welder is used (large diameters), the procedure is almost the same, except that the pressure is exerted by the bench. A good weld will produce a uniform bead all around the welded perimeter (see butt weld bead) Wait about two hours before doing hydraulic tests.
and allowing the material to melt slowly
Count the time indicated in the enclosed table according to the diameter of the pipe

Remove the pipe and fitting and insert the pipe into the fitting,
Check the temperature of the matrices $\left(275-285^{\circ} \mathrm{C}\right)$. It is necessary to avoid air currents that could cool the matrix on one side. The temperature difference does not guarantee a good weld.
Clean the pipe and fitting with a clean cloth
Mark the depth at which the pipe should enter
Mark the depth at which the pipe should enter
Insert the pipe and fitting while exerting a light pressure on them

\square Steps for machine welding

Insert the pipe into the fitting

Note: It is recommended to wait at leasta couple of hours before testing for leaks.

special care of the heating matrices

- It is important to keep them in good condition, preventing them from suffering any impact or scratches.
- Always keep them clean. If there is any material attached left, remove it while they are still hot using a clean cloth.
- If they are used for more than one material, cleaning when finished is especially important.

The procedure consists of heating two pipes (or a pipe with a fitting of the same outer diameter and thickness as the pipe) by means of a heating plate, and then apply pressure to achieve the connection of both elements.
It is usually used for large diameters. It is very important that it is always carried out between equal thicknesses and diameters.

\square Welding instructions

- Place the elements aligned on the welding machine.
- Face the pipes (using the blade of the machine itself) to properly clean the surfaces and even them out.
- Remove the facing tool and the burrs without touching the surfaces to be connected.
Ensure the surfaces are parallel to each other.
- Check that the heating plate is clean and at the correct temperature.
- Follow the pressure curve indicated by the machine manufacturer.
- A first P1 pressure is exerted for a T1 time to create the initial height cord (h).
- After this time, lower the pressure to ensure full heating P2 (preset
welding pressure $=1.5$ bar)
After the heating time T , move back the elements and remove the heating plate and quickly connect the ends T3.
- Increase the pressure progressively until it reaches the pressure indicated by the manufacturer P1 - T4
Maintain this pressure for the time indicated until the weld is cold T5.
Wait about two hours before doing hydraulic test.

The system consists of passing a low voltage current throug metal coils inside the fittings, embedded in the polypropylene, causing the Joule heating effect that welds the fitting with the pipe previously inserted in it.
 inserted without forcing it but play-free).

Reboca, S.L. has flanged systems that enable the connection between pipes. REPOLEN flanges are PN16.
Remember that the tightening of the screws must always be done crosswise and gradually, in order to ensure a perfect coupling of the gasket.

Measure	PN	Thickness (mm)	Outer diameter (mm)	Internal diameter (mm)	No. of holes
32	16	16,8	117	42,5	4
40	16	18	141,5	51	4
50	16	18	151	62,5	4
63	16	19,5	165	78	4
75	16	19,5	188,5	93	4
90	16	19,5	199	113	8
110	16	19,5	224,5	134	8
125	16	25	250	168	8
140	16	25	250	159	8
160 PPR	16	19,5	285	191,5	8
160 PE	16	19,5	285	179,5	8
200	16	24	341,5	236	12
250	16	30	404,5	288,5	12
315	16	34	462,5	338	12

8.5 INSTALLATION OF BRANCH SYSTEMS

Make a hole in the pipe where you want to make the new intake with the corresponding drill.

Apply the heating matrices both to the pipe and to the branch to be grafted, proceeding in the same way as with any socket weld.

Cut the edges that may remain carefully so as not to damage the pipe.

Remove the matrices and insert the branch into the hole.

Cut off excess plug.

The hole has to be round.

Insert the plug into the hole taking care not to insert it too much so as not to create turbulence in the water flow.

Finished look.

ANNEXES

9.1 CHEMICAL RESISTANCE TABLE

+	Resists with insignificant variations		
cold sat.	Cold saturation		
(Resists with variations under certain conditions	e	Boiling	
-	Does not resist	a	Aqueous solution

product	concent	temprature			product	CONCENT.	темperature		
	\%	$20^{\circ} \mathrm{C}$	anc	${ }^{1000}$			20 C	600	1ome
Oil No. 3 according to ASMT D380-59	100	+	1	-	Acetic Acid	70	+	+	
Camphor oil						50	+	+	
Animal oil		+	+			30	+	+	
Peanut oil	100	+	+	1		10	+	+	+
Coconut oil		+	+		Battery acid	$\mathrm{d}=1,28$	+	+	
Fish liver oil		+			Adipic acid	a.	+	+	
Flaxsed oil	100	+	+	+	Anthraquinon-sulfonic acid	aq. (susp)	+		
Corn oil	100	+	1		Arsenic Acid	aq. 80	+	+	
Animal oil	100	+	1			aq. dil.	+	+	
Vegetable oil	100	+	1		Benzoic acid	100	+	+	
Olive oil	100	+	+	+		aq. any	+	+	+
Palm kernel oil		+	1		Boric acid	100	+	+	+
Silicone oil	100	+	+	+		aq. stat old	+	+	+
Soybean oil	100	+	1		Bromhydric acid	conc.	+		
Vaseline oil		+	1	-	Bromic acid	conc.	+		
Fine spindle oil	100	+	-		Butyric acid	aq. 20	+		
Transformer oil	100	+	1			100	+		
Lubricating oils	100	1			Citric acid	aq. any	+	+	+
Mineral oils (without aromatic components)	100	+	1	-	Hydrochloric acid	36 10	+ +		+
Machine oils	100	+	1	-	Chloric acid	aq. 1	+	1	-
Engine oils	100	+	1	-	Chloraacetic acid	(di) 100	+	1	
Acetaldehyde	100	1	-			(mono) 100	+	+	
	a. 40	+	+			(tri) 100	+	+	
Ammonium acetate	aq. any	+	+	+	Chlorosulfuric acid	100	-	-	-
Amyl acetate	100	1	-		Chromic acid	50	+	+	
Butyl acetate	100	1	-	-		20	+	+	
Ethyl acetate	100	+	1		Diglycolic acid	a. 30	+	+	
Methyl acetate	100	+	+e			aq. stt cold	+		
Lead acetate	aq. stat ocld	+	+		Stearic acid	100	+	1	
Vinyl acetate	100	+	1		Hydrofluoric acid	70	+		
Sodium acetate	aq. stat ocld	+	+	+		40	+	+	
Acetophenone	100	+	1						
Acetone	100	+	+e						
Acetic acid (glacial)	100	+	,	-					

Product	concent	temperature		
	\%	20°	arc	1000
Formic acid	100	+	1	
	a. 85	+	1	
	a. 50	+	1	
	a. $2 \mathrm{n}(-9)$	+	+	
Phosphoric acid	85	+	+	+
	60	+	+	
	up to 30	+	+	
Phthalic acid	a. 50	+	+	
Glycolic acid	100	+		
Palm kernel fatty acid	100	1		
Lactic acid	a. 90	+	+	+
	a. 50	+	+	+
	a. 20	+	+	+
	a. 10	+	+	+
Maleic acid	100	+	+	
	aq, sat. cold	+	+	
Malic acid	aq, sat. cold	+	+	
Nitric acid	68	-	-	
	50	1	-	
	up to 30	+	1	
Oleic acid	100	+	1	-
Oxalic acid	a. 50	+	1	
	a. 30	+	+	+
	aq, stat cold	+	1	
Perchloric acid	a. 2 n	+	+	
Picric acid	1	+		
Propionic acid	a. 50	+	+	
Prussic acid	aq. any	+	+	
Silichofluoric acid	a. . 41032	+		
Succinic acid	100	+	+	
	aq, sat cold	+	+	
Sulphuric acid	98	1	-	
	85	+	1	
	50	+	+	
	10	+	+	+
Fatty acids (C6)	100	+	+	
Tartaric acid	a. 10	+	+	
	aq, stat cold	+	+	
Acrylonitrile	100	+		
Dinonyl adipate	100	+		
Dioctyl adipate	100	+		
Water (drinking, dest.)		+	+	+
Bromine water	cold sat.	-	-	-
Chlorine water	cold sat.	1	-	

Product	concent.	temprature		
	\%	$20 . \mathrm{C}$	Soc	1000
Sea water		+	+	+
Soda water		+	+	
Mineral water		+	+	+
Hydrogen peroxide	30	+	1	
	10	+	+	
	4	+	+	
Aqua regia		1	-	
Camphor	100	+		
Ally alcohol	96	+	+	
Amyl alcohol	100	+	+	+
Benzyl alcohol	100	+	1	
Wax alcohol	100	1	-	
Copra alcohol	100	+	1	
Ethyl alcohol	100	+		
	96	+	+	+
Ethyl alcohol (in fermentation)	usual	+		
Ethyl alcohol + acetic acid (in fermentation)	usual	+		
Furfuryl alcohol	100	+	1	
Methoxybutyl alcohol	100	+		
Proparty alcohol	a. 7	+	+	
Starch	100	+	+	
	ins salution	+	+	
Tar		+	1	
Alum (of all kinds)		+	+	
Ammonia	a. 30	+	+	
	a. 15	+		
	a. 10	+	+	
	smoses	+	+	
	Hiquid 100	+		
Acetic anhydride	100	+	1	-
Sulphur dioxide	any	+	+	+
Aniline	100	+	+	
Anisole		1	1	
Antifreeze		+	+	+
Antiformin (benzaldoxime)	a. 2	+	+	
Salted herring		+		
Rum aroma		+		
Asphalt		+	1	
Aspirin		+		
Sugar (dry)	100	+	+	+
Sugar (in solution)	aq. any	+	+	+
Sulphur	100	+	+	+
Chrome baths		$+$	+	

Product	concent.	temprature		
	\%	200	600	1000
Benzene	100	1	-	
Benzaldehyde	100	+		
	aq. st. cold	+		
Sodium benzoate	aq, st. cold	+	+	
Carbon dioxide	(wet) any	+	+	
	(dry) 100	+	+	
Sodium bisulfite	aq. st. cold	+	+	
Moth balls		+		
Potassium borate	aq. 1	+	+	
Borax	aq. st. cold	+	+	+
Potassium bromate	aq. st. cold	+	+	+
Bromine	(liquid) 100	-		
	(mpous) Himb	-	-	
	(spanas iom	1	-	
Potassium bromide	aq. statcold	+	+	+
Butadiene	100	1	-	
Butane	(sames) 100	+	+	
	(liquid) 100	+		
Butanediol	a. 100	+	+	
Butanol	100	+	1	1
Butanetriol	a. 100	+	+	
Butylphenol	cold sat.	+		
Butylphenone	100	-		
Butylglycol	100	+		
Butynediol	100	+		
Butyraldehyde	100	1		
Butoxyl		+		
Cocoa	ready to be consumed	+	+	+
	powder	+		
Coffee	eady to be consumed	+	+	+
	grimangemad	+		
Cinnamon		+		
Sodium hydrogencarbonate (sodium bicarbonate)	aq. stat cold	+	+	+
Ammonium carbonate	aq. any	+	+	+
Calcium carbonate	aq, stat cold	+	+	+
Potassium carbonate	aq. st. cold	+	+	
Sodium carbonate	a. 10	+	+	+
	aq. st.cold	+	+	
Beeswax		+	1	
Encaustic wax	100	+	1	
Beer		+		
Potassium cyanide	100	+		
	aq. st. cold	+	+	

Product	concent	temprature		
	\%	$2{ }^{20} \mathrm{C}$	com	1000
Cyclohexane	100	+		
Cyclohexanol	100	+	1	
Cyclohexanone	100	+	1	
Clophenes		+	/	-
Chloramine	aq. any	+		
Potassium chlorate	aq. statold	+	+	+
Sodium chlorate	aq. st. ocold	+	+	
Aniline hydrochloride	sat. a.	+	+	
Phenylhydrazine hydrochloride	a.	+	1	
Sodium chlorite	sat. a.	+	1	
Chlorine	$\begin{gathered} \text { gaseeuss } \\ \text { dryy } 100 \end{gathered}$	-		
	$\begin{aligned} & \text { gaseous, } \\ & \text { wet } 10 \end{aligned}$	1		
	Higutid 100	-		
Chlorobenzene	100	+		
Chloroethanol	100	+	+	
Chloroform	100	/	-	
Ammonium chloride	aq. any	+	+	+
Antimony chloride	a. 90	+		
Benzoyl chloride	100	1		
Lime chloride	aqueous	+	+	
Calcium chloride	a. 50	+	+	+
	a. 10	+	+	+
	aq. stat old	+	+	+
Ethyl chloride	100	1		
Ethylene chloride	100	1		
Hydrogen chloride (gaseous, dry and wet)	any	+	+	
Methylene chloride	100	1	- e	
Methyl chloride	100	1	-	
Sulphuryl chloride	100	-		
Thionyl chloride	100	-		
Tricyanogen chloride	100	+		
Stannous chloride	aq. st. cold	+	+	
Potassium chloride	100	+	+	+
Sodium chloride	aq. stat.old	+	+	+
	a. 10	+	+	+
	a. 50	+		
Coca-Cola		+		
Calendering glue		+	+	
Apple compote		+	+	+
Cognac		+		
Shoe polish		+	1	
Cresols	100	+	1	
	insolution	+		

Product	concent	temprature			Product		temperature		
	\%	20.0	arc	${ }^{100 C}$			${ }^{200}$	600	100C
Potassium chromate	a. 40	+	+	+	Cellulose tanning extracts	usual	+		
Crotonaldehyde	100	+			Vegetable tanning extracts	usual	+		
CY3 (machine oil)		+	1	-	Phenol	hotasta.	+	+	
Shampoo		+	+			comerc.	+	+	
Sauerkraut (ready to be served)		+	+	+	Fluorine (dry)	100	-		
Decalin	100	1	1		Ammonium fluoride	a. up to 20	+	+	
Dextrin	aq. stitold	+			Formaldehyde	a. $30 / 40$	+	+	
Dichlorobenzene	100	1				a. 10	+	+	
Dichloroethane	100	+			Ammonium phosphate	aq. any	+	+	+
Dichloroethylene	100	+			Tricesyl phosphate	100	+	1	
Potassium dichromate	aq. st. cold	+	+	+	Trioctyl phosphate		+		
Diethanolamine	100	+			Sodium phosphates	hotata.	+	+	+
Diisobutylketone	100	+	-		Phosgene	100	1	1	
Dimethylamine	100	+			Frigen 113	100	-		
Dimethylformamide	100	+	+		Fructose		+	+	+
Dioxane	100	1	1	-	Butyl phthalate	100	+	1	1
Light DTE (turbine oil)		-	-		Dibutyl phthalate	100	+	1	1
Cold cuts		+	+		Dihexyl phthalate	100	+	1	
False fir needles essence	100	+	+		Dinonyl phthalate	100	+		
Wild spruce needles essence		+	+		Dioctyl phthalate	100	+		
Bitter almonds essence		+			Fuel oils	100	+	1	
Carnation essence		+	1		Roasting gas (dry) Lighting gas (benzene free)	any	+		
Lemon rind essence		+			Lighting gas (benzene free)		$+$		
Orange peel essence		+			Diesel	100	1		
Lemon essence		+			Crude petrol	100	1		
Mint essence		+			Normal petrol	100	1		
Nail polish		+	1		Super petrol	100	1	-	
Yeast spices		+	+		Petrol boiling point $100-140^{\circ} \mathrm{C}$	100	1	-	
Whale sperm		+			Gelatine	aq. any	+	+	
Amylacetic ester	100	1	-		Gin		+		
Butylacetic ester	100	1	-		Glycerine.	100	+	+	+
Monoloracetic acid ethyl ester	100	+	+			aq. any	+	+	+
Methylacetic ester	100	+	+e		Glycocole	a. 10	+		
Dichloroacetic acid methyl ester	100	+	+		Glycol	100	+	+	+
Monochloracetic acid methyl ester	100	+	+			any	+	+	+
Isopropyl ester	100	1	-		Glucose	hotstata	+	+	+
Petroleum ester	100	+	1		Glucose (grape sugar)	hotata	+	+	
Dibutyl ether	100	1	-		Flour	100	+		
Ethyl ether	100	1			Heptane	100	1	1	
Ethylbenzene	100	1	-		Hexane	100	+	1	
Ethylene glycol	100	+	+	+	Hexanetriol	100	+	+	+
Acetic ester	100	+	1		Chloral hydrate	any	1	-	
Ethylhexanol	100	+			Hydrazine hydrate		+		

Product	concent	temprrature			Product	CONCENT. \%	temprrature		
	\%	${ }^{20 . C}$	arc	1000			200	6ra	1000
Hydrogen	100	+	+	-	Mixture of liquid paraffins 12-150E		+	1	
Hydroquinone	100	+			Honey		+	+	
Barium hydroxide	aq. any	+	+		Morpholine		+	+	
Sodium hydroxide	100	+	+		Mustard		+		
Calcium hypochlorite	aq. any	+	+		Mowilith D		+		
Sodium hypochlorite	a. 20	+	1		Naphthalene	100	+		
	a. 10	+	+		Cream		+		
	a. 6	+	+	+	Ammonium nitrate	aq. any	+	+	+
Isobutyric aldehyde	100	1			Calcium nitrate	a. 50	+	+	
Isooctane	100	+	1		Silver nitrate	a. 20	+	+	+
Isopropanol	100	+	+	+	Potassium nitrate	100	+	+	
	aq. any	+	+			aq. stat old	+	+	
Soap	liquid	+	+		Sodium nitrate	aq. statcold	+	+	
	bar	+	+		Nitrobenzene	100	+	T	
Jelly		+	+	+	or Nitrotoluene		+	1	
Tomato juice		+	+		Octylcresol	100	1	-	
Tomato ketchup		+	+		Oleum	any	-	-	-
Lanolin (wool grease)		+	1		Urine		+	+	
Milk		+	+	+	Phosphorus oxychloride	100	+	1	
Pulses		+	+	+	Ethyl oxide	100	1 e		
Bisulphite bleach SO2 content	hotstat.a	+	+		Oxygen	any	+	1	
Whitewash bleach, 12.5\% active chlorine		+	1	-	Ozone	50 pphm	+	1	
Yeast	aq. any	+			Sodium palmitate	5	+	+	+
Liqueurs		+			Paraffin	100	+	+	
Brake fluid	100	+				Iiquid 100	+	1	-
Lysol		+	1		Toothpastes		+	+	
Fruit salad		+	-		Pectin	aq. stat cold	+	+	
Mayonnaise		+			Phosphorus pentoxide	100	+		
Pork lard		+	+	1	Sodium perborate	aq. statcold	+	+	+
Butter		+	+		Potassium perchlorate	a. 1	+	+	
Margarine		+	+		Perchlorethylene	100	1	-	
Molasses	usual	+	+		Perfume		+		
Beet molasses		+	+	+	Potassium permanganate	aq. st. cold	+	+	
Menthol	100	+			Potassium persulphate	100	+		
Mercury	100	+	+			aq. any	+	+	
Jam		+	+	+	Fish	pickled	+	+	+
Methanol	100	+	+e		Petroleum	100	+	1	
	a. 50	+	+		Paprika		+	+	
Methylamine	100	+			Pepper		+	+	
	a. 32	+			Pyridine	100	1	1	
Methyl bromide	100	-	-		Caustic Potash	55	+	+	+
Methyl ethyl ketone	100	+	1			25	+	+	+
Chromic mixture		-	-			2 n	+	+	+
Mixture of naphthene and liquid prafifin 8.5 . ${ }^{\text {F }}$	100	+	1	-	Dairy products		+	+	+

Product	concent	temperature			Product	concent	temperature		
	\%	200	¢00	1000		\%	20.4	coc 100	anc
Dishwashing products		+	+	+	Dimethyl sulphate	100	1	-	
Propane	gsous 100	+	+			a. 50	1	1	
	liquid 100	+			Hydrazine sulphate	10	+	+	
i-Propanol +n -Propanol	100	+	+		Hydroxylamine sulphate	a. 12	+	+	
Propylene glycol	a. 100	+	+		Potassium sulphate	aq. st. cold	+	+	
Pudding		+	+	+	Sodium sulphate (Glauber salt)	aq. stat ocld	+	+	
Furniture polish		+	1	-	Sodium sulphide	a. 40	+	+	
Kerosene	100	/	1			aq, stat old	+	+	
Cheese		+			Fatty alcohol sulphanate		+	1	
Quinine		+			Ammonium sulphide	aq. any	+	+	
Nail polish remover		+	1		Carbon sulphide	100	+		
Horseradish		+			Hydrogen sulphide	(dry) 100	+	+	
Cottage cheese		+				aq. any	+	+	
Photographic developers	ready to be used	+			Tea	cosamption	+	+ +	+
	commectial	+	+			leaves	+	+	
Rum		+	+		Tetrachloroethane	100	1	-	
Sagrotan		+	1		Tetrachloroethylene	100	1	-	
Common salt	aq. any	+	+		Carbon tetrachloride	100	-	-	
Fertilizing salt	sat. a.	+	+		Tetraethyl lead	100	+		
Fixing salt in solution	any	+	+		Tetrahydrofuran	100	1	-	
Aluminium salts	aq. any	+	+	+	Tetrahydonaphthalene	100	-	-	
Barium salts	aq. any	+	+	+	Ink		+	+	
Zinc salts	aq. 9.tal cold	+	+		Tincture of iodine	usual	+		
Copper salts	aq. 9 st cold	+	+		Thiophene	100	1	-	
Chromium salts (bivalent and trivalent)	aq. stat cold	+	+		Sodium thiosulphate	aq. stat old	+	+	
Iron salts	aq. stat cold	+	+	+	Toluene	100	1	-	
Mercury salts	aq.ats cold	+	+		Turpentine	100	-	- -	-
Nickel salts	aq. 9tat oold	+	+		Trichloroethylene	100	1	1	
Silver salts	aq. stat old	+	+		Antimony trichloride	100	+	+	
Magnesium salts	aq. 9 at cold	+	+	+	Phosphorus trichloride	100	+		
Dibutyl sebacate	100	+			Trielanolamine	100	+		
Beef tallow	100	+	+		Urea	aq. stat old	+	+	
	sulphur emission	+			Vanilla		+	+	
Shell-Dromus	a. 0,5	+	1	1	Nitrous vapours	conc.	+	- -	-
Soluble silicate		+	+		Vaseline		+	1	
Silicone emulsion		+	+	+	Wine		+	+	
Viscose solution for spinning		+	+		Whisky		+		
Soap solution	any	+	+		White spirit	100	1	-	
Iodine solution	50	+	+		p-Xylene	100	-	-	
Caustic soda	52	+	+	+	Potassium iodide	aq. stat ocld	+	+	
	30	+	+	+	Lemon juice		+	+	
	2 n	+	+	+	Apple juice		+	+	
Fat-free buttermilk		+			American pineapple juice		+	+	
Ammonium sulphate	aq. any	+	+	+	Fruit juice		+	+ +	+

Material properties
What is Poliethylene. Types of poliethylene 10.1 Physico-chemical properties 10.2 Gas permeability of PE pipes 10.3 Chemical resistance 10.4 Bacterial resistance 10.5

Product range
PE-100 pipes UNE-EN 12201

11

Human consumption
Human consumption
Reclaimed water
Sewerage, sanitation and other applications
PE-100 pipes Cables, electricity and telecommunications 11.3
$\begin{array}{ll}\text { Fications } & 11.3 \\ \text { Fittings } & 11.4\end{array}$
System features
Main advantages $\quad 12$
Application fields 12.2
Marking and traceability $\quad 12.3$ $\begin{array}{lll}\text { Markige, handling and transport } & 12.4\end{array}$

Installation criteria
$\begin{array}{ll}\text { Buried Installations } & 13.1\end{array}$
Non-buried installations $\quad 13.2$
Flexibility. Curvature 13.3
$\begin{array}{ll}\text { Pressure drop } & 13.4 \\ & \end{array}$
Water hammer 13.5
Hydraulic start-up test 13.6
Connection systems
Thermofusion or socket welding connection 14.
Butt weld connection $\quad 14.2$
$\begin{aligned} \text { Butt weld connection } & 14.2 \\ \text { Electrofusion connection } & 14.3\end{aligned}$
Flanged systems 14.4
$\begin{array}{ll}\text { Mechanged systems } & 14.4 \\ \text { Mystems } & 14.5\end{array}$ Installation of branch systems $\quad 14.6$

Annex

Polyethylene is a polymer made up of ethylene monomers which, depending on the polymerisation process used, are arranged into chains that may be more or less intertwined and more or less long. Their length and this intertwining will define the properties it will have.

When cooled, polymer chains can be arranged into crystalline structures (crystallisation) or maintain the disordered "ball" structure (amorphous structure). Depending on the grade of each of these structures, polyethylenes of different densities are obtained:

Low-density polyethylene: Density between $0.915-0.930 \mathrm{~g} / \mathrm{cm} 3$ and a degree of crystallinity of 40% to 55%. It is also called high pressure, because it is obtained in reactors that work at high pressures (up to 1000 atm . They have very branched molecules.

Medium-density polyethylene: Density between $0.930-0.940 \mathrm{~g} / \mathrm{cm} 3$ and a degree of crystallinity between 50 and 60%. Molecules with little branching.

High-density polyethylene: Density between $0.940-0.965 \mathrm{~g} / \mathrm{cm} 3$ and a crystallinity degree of $60-80 \%$. It is also called low pressure because it is obtained in reactors that work at a much lower pressure than the previous ones (from 30 to 40 atm). Molecules with short branches.

The properties of polyethylene depend mainly on density, molecular weight (length of chains) and molecular weight distribution.

The REPOLEN system uses high-density polyethylene, PE-100, with a bimodal distribution of molecular weights.

10.2 PHYSICO-CHEMICAL PROPERTIES

The higher the percentage of crystallinity, the higher: Tensile strength; modulus of elasticity (rigidity); hardness; resistance to solvents; impermeability to gases and vapours, etc. On the contrary, the lower: Impact resistance; translucency; and stress cracking. On the other hand, the higher the molecular weight, the higher the tensile strength and internal pressure, but the lower the fluidity of the melt. In summary, the most important properties of the PE-100 used to manufacture REPOLEN pipes and fittings are.

PROPERTY	VALUE	UNITS	TEST PROCEDURE
Fluidity index $\left(190^{\circ} \mathrm{C} ; 21.6 \mathrm{~kg}\right)$	7	$\mathrm{~g} / 10 \mathrm{~min}$	ISO 1133
Fluidity index $\left(190^{\circ} \mathrm{C} ; 5 \mathrm{~kg}\right)$	0.27	$\mathrm{~g} / 10 \mathrm{~min}$	ISO 1133
Density at $233^{\circ} \mathrm{C}$	962	$\mathrm{Kg} / \mathrm{m} 3$	ISO 1183
Tensile strength at the breaking point	38	MPa	ISO $527-2$
Elongation at the breaking point	>600	$\%$	ISO $527-2$
Elastic Flexural Modulus	1000	MPa	ISO 178
Oxidation induction time $\left(210^{\circ} \mathrm{C}\right)$	>20	Min	UNE EN 728
VICAT softening temperaure $(10 \mathrm{~N})$	128	${ }^{\circ} \mathrm{C}$	ISO 306
Long-term hydrostatic resistance after 50 years and $20^{\circ} \mathrm{C}(97.5 \% \mathrm{LCL})$, MRS	>10.0	MPa	ISO TR 9080

Due to their molecular structure they have excellent resistance to a great variety of chemical agents. In the same way, they feature a very good resistance to electrochemical corrosions, due to the effect of sea water; urban and industrial discharges, etc.

For further information, please refer to Annex I.

BACTERIAL RESISTANCE 10.5

Due to their characteristics, PE pipes do not favour the cultivation of any type of microorganism, bacteria or known fungus. The mirror finish also helps prevent the formation of fouling that can become a very suitable medium for the appearance of undesirable organisms.

The coefficient of permeability depends on the type of plastic and gas. Polyethylene is also influenced by its basic density. In the table the values of

P (cm3 / m bar)

Gas	$\mathrm{P}(\mathrm{cm} 3 / \mathrm{m}$ bar $)$
Nitrogen	0.018
Air	0.029
Carbon Monoxide	0.036
Natural Gas	0.056
Methane	0.056
Argon	0.066
Oxygen	0.072
Ethane	0.089
Helium	0.15
Hydrogen	0.22
Carbon Dioxide	0.28
Sulphur Dioxide	0.43

Gas	$\mathrm{P}(\mathrm{cm} 3 / \mathrm{m}$ bar)
Nitrogen	0.018
Air	0.029
Carbon Monoxide	0.036
Natural Gas	0.056
Methane	0.056
Argon	0.066
Oxygen	0.072
Ethane	0.089
Helium	0.15
Hydrogen	0.22
Carbon Dioxide	0.28
Sulphur Dioxide	0.43

\qquad -

PRODUCI

RANGE
11.1 PE-100 pipes UNE-EN 12201

- Human consumption - Reclaimed water
\rightarrow Sewerg
11.2 PE-100 Pipes UNE-EN 15501 (Gas)
11.3 PE-100 pipes Cables, electricity and telecommunications
11.4 Thermofusion fittings
11.5 Electroweldable fittings and transitions
11.6 Compression fittings
11.1 PE-100 pipes UNE-EN 12201

For human consumption water: Black with blue stripes
For reclaimed water: Black with purple stripes
For sewerage, sanitation and other applications: Black with brown stripes
Calculated with a safety coefficient $\mathrm{C}=1.25$

S5 SDR11 PN16

	S5 SDR11 PN16			
Nominal diameter (mm)	Intemal diameter (mm)	Thickess (mm)	Weght (kg/m)	Capacit (l/m)
20	16	$2-2.3$	0,11	0,2
25	20.4	$2.3-2.7$	0,17	0,33
32	26	$3-3.4$	0,28	0,53
40	32.6	$3.7-4.2$	0.42	0.83
50	40.8	$4.6-5.2$	0,66	1,31
63	51.4	$5.8-6.5$	1,02	2,07
75	61.4	$6.8-7.6$	1,46	2,96
90	73.6	$8.2-9.2$	2,1	4,25
110	90	$10-11.1$	3,14	6,36
125	102.2	$11.4-12.7$	4,13	8,2
140	114.6	$12.7-14.1$	5,14	10,31
160	130.8	$14.6-16.2$	6,75	13,44

S4 SDR9 PN20				
Nominal diameter (mm)	Internal diameter (mm)	Thickness (mm)	Veight (kg/m)	Capacity (1/m)
20	15.4	2.3-2.7	0,14	0,19
25	19	3-3.4	0,21	0,28
32	24.8	3.6-4.1	0,33	0,48
40	31	4.5-5.1	0,51	0,75
50	38.8	5.6-6.3	0,79	1,18
63	48.8	7.1-8	1,27	1,87
75	58.2	$8.4-9.4$	1,75	2,66
90	69.8	0.1 - 11.3	2,52	3,83
110	85.4	12.3-13.7	3,74	5,73

11.4 FITTINGS

trmorstos	C0, mistaras sex	
)		
0 sme	Do mindememe	
(1) ismemememax	8c. mimm	
(1) ${ }^{\text {andemenamax }}$	Co inmasmex	
(3) Somitatice	(ce) meximeam	
		(3)
micasare		
3 mommmantime	(6.) ${ }^{\text {ninememememax }}$	
	kers s, vanvis	armics
		IJ mantement
$)^{3}$ asimetic	$13^{\text {mimatat }}$	10 matumeme
Co matamimetimax		$\bigcirc \rightarrow$ and
	3 Cam	(c)
0 (8	$5{ }^{6}$ mexmmamm

(c)

SYSTEM
\square Le

- Easy handling and installation, thanks in part to its reduced weigh

Low maintenance cost.
Multiple connection systems.
100% recyclable
Resistant to high energy radiation.
Ultraviolet protection. Suitable for outdoor use
Highly resistant to abrasion.

- Absorbs vibrations and ground movements (Seismic hazards). Also passage of heavy vehicles.
- Ele
alvanic currents.
-

nternal mirror shine and very low roughness coefficient
Minimal pressure drop.
Highly corrosion resistant
High chemical resistance to both acids and alkali
100% non-toxic.
Very low noise transmission leve.
Flexibility. Possibility of cold bending.
High impermeability to gases.
Low celerity (wave propagation velocity)
High resistance to temperatures below $0^{\circ} \mathrm{C}$.

Drinking water pipes

Recycled waters

PROPERTY OF THE PIPE	VALUE	UNITS	
Lineal thermal expansion coefficient	0.22	$\mathrm{~mm} / \mathrm{m}{ }^{\circ} \mathrm{C}$	
Thermal conductivity	0.37	$\mathrm{Kcal} / \mathrm{m}{ }^{\circ} \mathrm{C}$	
Poisson coefficient	0.4	o	
Dielectric constant	k	2.5	$-\mathrm{-}$
Hydraulic roughness	k		
	N (Manning)	0.003	mm
	C (Hazen-Williams)	0.008	---
Shore D hardness		150	---
Carbon black content	65	--	
Carbon black dispersion	$2-2.5$	mass	
Volatile substances content	<3	--	
Water content	<350	$\mathrm{mg} / \mathrm{kg}$	

12.3 MARKING AND TRACEABILITY

The marking of the pipes is done in accordance with the UNE EN 12201 standard and the requirements of the AENOR Special Regulations, RP.001.01. in the case of water, and the UNE EN 1555 standard and the AENOR Special Regulations RP. 001.05 in the case of gaseous fuels. The purpose of pipe marking is to provide the necessary information to the installer, the user and the manufacturer, if necessary. The marking includes:

- Trademark: REPOLEN
- Reference to the AENOR mark (Product Certificate) and contract number.
- Material it is made of.
- Nominal diameter and thickness.
- Nominal pressure and SDR.
- Intended use: W for drinking water; P for pressurised sewage and sewerage; W/P for mixed use; and GAS for gaseous fuels.

Manufacturing period

- Symbol of suitability for food use, if applicable.
- Reference to 100% national manufacture.

The manufacturing period is unique for each pipe production, enabling complete traceability of the finished product. Knowing this number, it is possible to make a complete tracking from the entry of raw material, until the delivery at our clients' home.

Although the most used reference is the nominal pressure (PN), it is convenient to know the SDR and the S:

- SDR is the relation between the outer diameter and the thickness of the pipe, according to the equation:

$$
\text { SDR }=\varphi \text { ext / thickness }
$$

- S is a dimensionless number that classifies the piping according to ISO 4065 standard and indicates the relationship between the tangential tension (σ) and the working pressure (P) at a certain temperature, according:

$S=\sigma / P$

STORAGE, HANDLING AND TRANSPORT
12.4

PE pipes can be stored indoors or outdoors, thanks to the protection against solar radiation given by the carbon black.
The rolls can be stored horizontally on top of each other up to a height of 1.5 m and vertically only one height.
The bars can be stacked on flat and clean horizontal surfaces, having the necessary supports to prevent deformation and up to a maximum height of 1.5 m .

PE-100 pipes must be stored in such a way that they cannot come into contact with fuels, solvents, aggressive paints, etc. It is also advisable to avoid contact or proximity to surfaces that can reach $50^{\circ} \mathrm{C}$ or more
PE-100 is a resistant and flexible material, but it is necessary to avoid dragging on rough surfaces and contact with sharp-edged objects.

If, for any reason, a pipe with a damaged piece or with bends is detected, the damaged piece must be removed before installation

For transport, it is important to do it on a horizontal plane free of nails or protrusions that could damage the piping. Care must be taken in the correct stacking of the pipes. Do not place heavy loads on top that could deform the pipes.

When getting them off the lorry, they should NEVER be thrown, but accompany them when unloading and subsequent stacking

$\boldsymbol{\otimes}$

$\boldsymbol{\otimes}$

13.1 buried Installations

In general, the following can be established:

- Polyethylene pipings are flexible, susceptible to permanent deformation due to the load and the time of application of the load. These deformations shall be limited by applying the corresponding calculations (UNE 53-331).
- If there are steep slopes in the route, pipe laying should preferably be carried out in the ascending direction, having anchorage points in mind.
When pipe laying has to be interrupted, the ends should be plugged
to prevent the ingress of foreign bodies.
If there is a risk of flooding of the trench, points of attachment of the piping to the bed should be provided to prevent it from floating and to maintain the layout.
-The layout must follow a meandering path

Buried installation techniques can be: With conventional trenches, plough with mole drain and push plough. For trenching, a series of factors must be taken into account:
\square Trench width
This obviously depends on the diameter of the piping, the depth of the trench and the type of soil. There should be enough space on both sides of the pipe to facilitate compaction of the filling, such as:

DN (mm)	Minimum trench width $(\mathrm{OD}+\mathrm{x})$, meters		
	Piped trench	Trench without shoring	
		$\beta>60^{\circ}$	$\beta<60^{\circ}$
225	$\mathrm{OD}+0.40$	$\mathrm{OD}+0.40$	
$225<\mathrm{DN}<350$	$\mathrm{OD}+0.5$	$\mathrm{OD}+0.50$	$\mathrm{OD}+0.40$
$350<\mathrm{DN}<700$	$\mathrm{OD}+0.70$	$\mathrm{OD}+0.70$	$\mathrm{OD}+0.40$
$700<\mathrm{DN}<1200$	$\mathrm{OD}+0.85$	$\mathrm{OD}+0.85$	$\mathrm{OD}+0.40$
$\mathrm{DN}>1200$	$\mathrm{OD}+1.0$	$\mathrm{OD}+1.0$	$\mathrm{OD}+0.40$

\square Bed

If the terrain is even, it will be excavated to the ground level. If stones, foundations, rocks, etc. remain uncovered, they must be excavated below ground level for later filling of the bed. This additional excavation can be from 15 to 30 cm , and its filling will be done with the contribution of soil from the excavation, which is easily compactable and free of stones, or with loose sand.

■ Types of support
Two types of supports are considered:

- Type A Support: Consists of a continuous bed of compacted granular material on which the pipe rests. It must be evenly compacted across its entire length and wrap the pipe according to a 2α support angle, recommended 120°.
- Type B support: The pipe rests directly on the bottom of the trench or on the natural ground in the case of an installation under embankment. To be used only on sandy grounds free from lumps and stones.

Trench depth
It must protect the pipes from the loads they have to support, both fixed and mobile. To calculate these overloads, the information included in UNE 53331 IN standard must be taken into account. But as a general rule, the following is acceptable:

Fill

The filling is carried out once the piping has been laid and tested. It must be calculated and carried out in such a way as to limit the deformation of the pipe. For this purpose, the material used must be chosen taking into account the mechanical criteria of resistance to loads, stability in its conditions of use, ease of installation and subsequent compaction.
this is not possible, it is recommended to make a section like the one in the following drawing, bearing in mind hat the upper generatrix of the pipe walls.

Compacting

The compaction of the filler will depend on: The soil characteristics, the soil cover, the life time of the installation and the water table. The compaction equipment used will depend on the type of filling to be compacted.
The filling will be made by 10 cm successive layers, if possible with soil free of stones from the excavation itself, up to 30 cm the pipe generator getting 95% of the Normal Proctor in compaction. Care must be taken to balance the compaction on both sides of the pipe as to equalise the pressure on it. The rest of the filling can be done mechanically and with unsorted soil from the excavation.
13.2 NON-BURIED INSTALLATIONS

In non-buried installations it is very important to take into account issues such as lineal expansion, since the deformations that the pipe may undergo will be visible, causing a snaking effect that may lead to misunderstandings regarding the strength of the pipe.

The lineal expansion coefficient of polyethylene is considered to be 0.2 $\mathrm{mm} / \mathrm{m}^{\circ} \mathrm{C}$ for practical purposes. There are several formulas according to ENV 12108. The calculation equation is as follows:
ΔL is the increase in length that the pipe will have due to the lineal expansion, in millimetres.
L is the length of the pipe on which the lineal expansion is calculated in metres
λ is the lineal expansion coefficient, in $\mathrm{mm} / \mathrm{m}^{\circ} \mathrm{C}$. ΔT, is the temperature difference between the transported fluid and the ambient temperature

$\lambda=0,2 \mathrm{~mm} / \mathrm{m}^{\circ} \mathrm{C}$								
$\begin{gathered} \text { Piping } \\ \text { length }(\mathrm{m}) \end{gathered}$	Lineal expansion of REPOLEN PE-100 piping $\Delta \mathrm{I}$ (mm) Temperature difference Δ Tee (${ }^{\circ} \mathrm{C}$)							
	10	20	30	40	50	60	70	80
0.1	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6
0.2	0.4	0.8	1.2	1.6	2	2.4	2.8	3.2
0.3	0.6	1.2	1.8	2.4	3	3.6	4.2	4.8
0.4	0.8	1.6	2.4	3.2	4	4.8	5.6	6.4
0.5	1	2	3	4	5	6	7	8
0.6	1.2	2.4	3.6	4.8	6	7.2	8.4	9.6
0.7	1.4	2.8	4.2	5.6	7	8.4	9.8	11.2
0.8	1.6	3.2	4.8	6.4	8	9.6	11.2	12.8
0.9	4.8	3.6	5.4	7.2	9	10.8	12.6	14.4
1	2	4	6	8	10	12	14	16
2	4	8	12	16	20	24	28	32
3	6	12	18	24	30	36	42	48
4	8	16	24	32	40	48	56	64
5	10	20	30	40	50	60	70	80
6	12	24	36	48	60	72	84	96
7	14	28	42	56	70	84	98	112
8	16	32	48	64	80	96	112	128
9	18	36	54	72	90	108	126	144
10	20	40	60	80	100	120	140	160

Among the compensation systems employed, are: - Compensators. There are different types of compensators on the market.

- Address changes: in "L", "Z" or "U".

The equations used for the calculation are:
$\mathrm{L}_{\mathrm{b} 1}=\sqrt{\frac{3 * \mathrm{DN} * \Delta \mathrm{~L} 1 * \mathrm{E}_{50}}{0.15 * \sigma_{\mathrm{s}}}}$
$\mathrm{L}_{\mathrm{b} 2}=\sqrt{\frac{3 * \mathrm{DN} * \Delta \mathrm{~L}_{\mathrm{b}} * \mathrm{E}_{50}}{0.15 * \sigma_{\mathrm{s}}}}$
$\mathrm{L}_{\mathrm{b}_{1}} y \mathrm{~L}_{\mathrm{b}_{2}}$ can be seen in the drawings. DN is the nominal diameter of the pipe, in mm. ΔL_{1} is the increase in length of the L_{p}, in mm. E_{50} is the long term modulus of elasticity at $20^{\circ} \mathrm{C}\left(\mathrm{E}_{50}=150 \mathrm{~N} / \mathrm{mm} 2\right)$. σ_{s} is the design tension of PE100, in $N / \mathrm{mm}^{2} \sigma_{s}=$ MRS / C. MRS is the minimum tension required (10 MPa for PE100). C is the design coefficient $(1.25$ for water and 2 for gas). $\Delta L_{b 1}$ is the increase in length of the stretch L_{b},

Example:
A 90 mm diameter and 5 m length pipe is to be installed to carry water under an estimated maximum temperature difference of $25^{\circ} \mathrm{C}$.

$$
\Delta \mathrm{L}_{1}=q * \Delta \mathrm{~T} * \mathrm{~L}=0.2 * 25 * 5=25 \mathrm{~mm} \quad \sigma_{\mathrm{s}}=\frac{\mathrm{MRS}}{\mathrm{C}}=\frac{10}{1.25}=8
$$

$$
\mathrm{L}_{\mathrm{b} 1}=\sqrt{\frac{3 * \mathrm{DN} * \Delta \mathrm{LL} * \mathrm{E}_{50}}{0.15 * \sigma_{\mathrm{s}}}}=\sqrt{\frac{3 * 90 * 25 * 150}{0.15 * 8}}=918.56 \mathrm{~mm}=0.92 \mathrm{~m}
$$

$\Delta \mathrm{L}_{\mathrm{b} 1}=\alpha * \Delta \mathrm{~T} * \mathrm{~L}=0.2 * 25 * 0.92=4.6 \mathrm{~mm}$

$$
\mathrm{L}_{\mathrm{b} 2}=\sqrt{\frac{3_{*} \mathrm{DN} * \Delta \mathrm{~L}_{\mathrm{b} 1} * \mathrm{E}_{50}}{0.15 * \sigma_{\mathrm{s}}}}=\sqrt{\frac{3 * 90 * 25 * 150}{0.15 * 8}}=176.21 \mathrm{~mm}=0.18 \mathrm{~m}
$$

FLEXIBILITY. CURVATURE 13.3

The exposed installations must be installed on supports, to prevent serpentine effects, memory of the pipe due to being rolled up, etc.
Concerning lineal expansions, fixed points and moving points have already been discussed. In both cases, clamps that hold the pipe are installed. The former do not allow movement and the latter allow movement to absorb expansion.

Depending on where the installation is going to be placed, it may be advisable to place it on tiles or profiles. In all cases, the fastening or supporting elements of the pipes must be free of sharp edges that could damage the pipes.

As a guideline, a table with the recommended distance between supports is included. These values are for $20^{\circ} \mathrm{C}$, in case of reaching higher temperatures,

the following reducer factors should be applied:

- From 20 to $35^{\circ} \mathrm{C}$, coefficient $=0.9$

From 35 to $40^{\circ} \mathrm{C}$, coefficient $=0.85$

The good flexibility of PE enables installations with a certain cold curvature without the need for fittings. The estimated calculations are based on the following equations:

$$
\begin{array}{lc}
\text { For low nominal pressures } & \text { For high nominal pressuresalta } \\
\mathrm{R}_{\mathrm{c}}=\mathrm{R}_{\mathrm{m}}{ }^{2} /(0.28 \star \mathrm{e}) & \mathrm{R}_{\mathrm{c}}=(0.5 \star \mathrm{OD})^{2} /
\end{array}
$$

where: $R_{c} \quad$ is the curvature ratio in $m m$
$\mathrm{R}_{\mathrm{m}} \quad$ is the medium ratio of the piping in mm
e is the thickness of the pipe in mm
OD is the outer diameter of the pipe in mm
$\varepsilon \quad$ is the elongation of the superior fibres, in percentage, and mustn't be higher than 2.5% in the long term

In general, you can use the following table with the values calculated at $20^{\circ} \mathrm{C}$. If the installation is done at $0^{\circ} \mathrm{C}$ it is multiplied by 2.5 ; and between 0 and $20^{\circ} \mathrm{C}$ a linear extrapolation is done:

13.4 PRESSURE DROP

,
To calculate the pressure drop in polyethylene piping, the Connor
or Colebrook abacus can be used, which relate the pressure drop to
speed, internal diameter and flow rate. In any case, UNE 53959 IN can
also be consulted.

Connor Graph

PRESSURE DROP J (m.c.a./ 100 m .)

The following coefficients are accepted depending on the equation
used for the calculation:
$\mathrm{k}=0.003 \mathrm{~mm}$ (absolute roughness, Colebrook formula)
$\mathrm{n}=0.008$ (Manning formula)
C $=150$ (Hazen Wiliams formula)

- Colebrok Graph

When a liquid is flowing through a piping at a constant speed and at a given time any element on the installation is operated (a valve is closed or opened, variation of a pump's speed, etc) an overpressure is caused, resulting in an unbalance in the fluidity speed of the liquid that alters flows and pressures in the different points of the pipeline. This overpressure is called water hammer and must be added to the working or service pressure.

Pressure and flow rate variations that result in a water hammer spread throughout the liquid mass in a wave-like motion. Wave propagation velocity is called celerity and is according to the water modulus of elasticity whose value varies according to the temperature and modulus of elasticity of the piping material.

The lower the value of the modulus of elasticity of the piping material, the lower the celerity and the overpressure value that can take place in the piping. It is therefore advisable to use polyethylene piping, due to their low modulus of elasticity, so as in the same operating conditions, they result in pressures that are much lower than those that would be produced with the use of classic materials, which are considerably more rigid.

Calculation of the overpressure by water hammer can be done using Michaud's equation:

$$
\begin{gathered}
\Delta \mathrm{H}= \pm \frac{2_{\star} \mathrm{L}_{\star} \mathrm{V}}{\mathrm{~g} * \mathrm{~T}} \\
\text { for } \\
\mathrm{T}>\frac{2{ }_{\star} \mathrm{L}}{\mathrm{a}}
\end{gathered}
$$

If: $\Delta \mathrm{F}=$ increase of pressure or height, or water hammer (overpressure in m.w.c.)
$a=$ wave propagation velocity or celerity in m / s
$\mathrm{r}=$ water velocity in a constant speed of m / s
$L=$ piping length in m
$\mathrm{g}=$ acceleration of gravity in $\mathrm{m} / \mathrm{s} 2 \mathrm{~T}=$ stop operation time in s
$\mathrm{T}=$ stopping manoeuvre time in s

The celerity is calculated with the equation:

$$
a=\frac{9900}{\sqrt{48.3+K_{c} * D_{m} / e}}
$$

$$
\mathrm{K}_{\mathrm{c}}=\frac{10^{10}}{\mathrm{E}}
$$

If $\mathrm{Kc}=$ dimensionless indicato

$\mathrm{E}=$ piping modulus of elasticity in $\mathrm{kg} / \mathrm{M}^{2}\left(\mathrm{I}^{1} 0^{8}\right.$ for PE$)$
In the case of very long pipelines, the water hammer does not reach its maximum value at the closing end (or point of change of direction), but at a generic point inside the pipe. In this case the Allievi equation is used:

$$
\Delta \mathrm{H}= \pm \frac{\mathrm{a}{ }_{\star} \mathrm{v}}{\mathrm{~g}}
$$

if
$\mathrm{T}<\frac{2{ }_{\star} \mathrm{L}}{\mathrm{a}}$

The water hammer can be mitigated in different ways:

- Check valves. They are installed in the impulsions to protect in group of pumping and the emptying of the piping through the pump. They can also be placed on the pipeline operating pressure - Flywheel. Or pumping group stop delayer. By means of a flywheel attached to the motor shaft
Air tank. A tank attached to the piping in which there is water and air under pressure.
This air absorbs the pressure variations in the pipeline. Requires
maintenance as air dissolves in water over time
- Surge tank. A vertical tank attached to the piping and higher than the equivalent pressure the piping can withstand.
Air release valves. Prevents cavitation at high points in the installation
Safety valves. If there is a possibility of cavitation leading to strong overpressure
- Internal pressure test (hydrostatic pressure)

The hydrostatic pressure tests will be carried out in piping sections of less than 500 m in length, and will be carried out as the assembly is completed in each section, without waiting to have the entire work completed. The pressure difference between the highest and lowest point shall not exceed 10% of the test pressure.

The internal hydrostatic pressure for the trench test must never exceed 1.4 times the maximum working pressure of the piping at the lowest point of the section. The pressure shall be raised slowly, not exceeding $1 \mathrm{~kg} / \mathrm{cm} 2$ per minute.

Before starting the test, all the pipeline fittings must be placed in their final position and the piping will be conveniently anchored in all the changes of direction as well as in the fixed points. The anchoring must be designed to withstand the maximum thrust developed during hydrostatic testing. The trench must be partially filled, in order to avoid piping movements, always leaving the connections uncovered.

Start by slowly filling the section to be tested with water, leaving open all the elements for air outlet, which will then be closed successively from bottom to top, once it has been verified that there is no air in the pipeline. If possible, the water will enter from the lower part, which will make the air release from the upper part easier. If this is not possible, filling will be done even slower to avoid air remaining in the piping.
At the highest point of the pipeline, a bleeder valve will be placed to expel the air and to check that the whole section to be tested is properly communicated.

Once the entire section has been filled, an initial inspection will be
Tests according to UNE-EN 805
As an option, the test can be performed according to the UNE-EN 805 standard. This test is longer as it consists of three stages, following the attached chart:

- Preliminary or Relaxation Stage
- Pressure Drop Stage
- Main Stage
carried out to check that all the connections are leak-tight.
The equipment necessary for the pressure test must have the appropriate elements to regulate the pressure increase. It must be placed at the lowest point of the piping to be tested and must be fitted with pre-calibrated pressure gauges. The pressure will be raised but it mustn't exceed $1 \mathrm{bar} / \mathrm{min}$

The ends of the section to be tested will be conveniently closed and easily detachable in order to be able to continue assembling the piping once the test is finished

Once the pressure testing has been obtained, a 30 -minute pause will be made. The test will be considered satisfactory when during this time the pressure gauge does not indicate descent above \downarrow (p 5), being p the pressure testing in trench in bar. When the pressure gauge drop is higher, leaks will be corrected and a new test will be carried out until a satisfactory result is obtained.

Various methods can be used to repair leaks or damaged sections. In general, the best way is to cut the damaged section and replace it with a prefabricated unit or fittings. When failure or damage occurs in a welded joint, the original weld must be completely eliminated before being re-welded.

CONNECTION SYSTEMS

14.3 Electrofusion connect
14.4 Flanged systems
14.5 Mechanical systems
14.6 Systanch systems
14.7 System repai

The main connection system are:
Thermofusion or socket welding (recommended option)
Electrofusion.
Butt or mirror welding.
Others: Flanged fittings, threads, victaulic system, etc.
For most of these systems, there are a series of common points to keep in mind:
tisessentialto mind hecleaniness of he lewenstobe correded. Suct cleaning shoul never be done using chemicals. Wiping off any dirt with a clean cloth would be enough. The cuts of the parts to be joined must be as parallel as possible to each other and as perpendicular as possible to the length of the pipe. If there is any burr, it is advisable to remove it before connecting the parts.
In processes where temperature is involved, it is important to ensure that materials with similar melting points are to be connected.
It is necessary to take into account the environmental conditions where the connection is going to take place, since extreme temperatures could distort machine data in automatic welds, or even affect the elements to be connected. In the same way, it is necessary to avoid air currents that can make the connection difficult, since it may accelerate the partial cooling of the different elements.
14.1 THERMOFUSION OR SOCKET WELDING

The process consists of connecting a pipe and a fitting by applying heat on the external part of the pipe and the internal part of the fitting. To do this, the pipe is inserted into the heating matrix while anothe heating matrix is inserted into the fitting.

Once the corresponding time has elapsed (see time table), the matrices are removed and the pipe is inserted into the fitting, keeping the pressure for the indicated time.

This type of welding guarantees a perfect pipe - fitting connection. The end result is a single part, eliminating the risk of leakage.

Apply the matrices to the pipe and fitting

Steps for machine welding

BUTT WELDING CONNECTION 14.2

Warm-up time (s)					
$\begin{aligned} & \text { Nominal } \\ & \text { Diameter }(\mathrm{mm}) \end{aligned}$	PN10	PN16	PN20		
16	---	3	5	4	10
20		3	5	4	10
25	---	4	6	4	15
32	---	5	7	6	15
40	---	7	10	6	25
50	9	11	15	6	25
63	12	14	20	8	40
75	18	20	25	8	40
90	25	30	35	8	50
110	35	45	45	10	60
125	40	50	50	10	65

Note: 11 is recommended to wait at least a couple of hours before testing for leaks.

- Special care of the heating matrices

It is important to keep them in good condition, preventing them from suffering any impact or scratches.
Always keep them clean. If there is any material attached left, remove it while they are still hot using a clean cloth.
If they are used for more than one material, cleaning when finished is especially important.

If they are damaged, replace them with new ones. The matrices have a Teflon coating which ensures a homogeneous distribution of heat. If the Teflon is damaged, the matrix will not heat evenly in all its parts and correct welding cannot be guaranteed.

The procedure consists of heating two pipes (or a pipe with an fitting of the same outer diameter and thickness as the pipe) by means of a heating plate (approximately $210-225^{\circ} \mathrm{C}$), and then use pressure to achieve the connection of the two elements.
It is usually used for large diameters. It is very important to carry this out using equal thicknesses and diameters.
Welding instructions

- Place the elements aligned on the welding machine.
- Face the pipes (using the blade of the machine itself) to properly clean the surfaces and even them out.
- Remove the facing tool and the burrs without touching the surfaces to be connected.
Ensure the surfaces are parallel to each other.
- Check that the heating plate is clean and at the correct temperature.
- Follow the pressure curve indicated by the machine manufacturer
- A first Pl pressure is exerted for a Tl time to create the initial height cord (h).
- After this time, lower the pressure to ensure full heating P2 (preset

After the heating time T2, move back the elements and remove the heating plate and quickly connect the ends T3.
Increase the pressure progressively until it reaches the pressure indicated by the manufacturer P1 - T4.
Maintain this pressure for the time indicated until the weld is cold
T5.
Wait about two hours before doing hydraulic tests.

ALIGNMENT
Maximum allowable deviations

Initial cord height in a ${ }^{*} T$, tim

The system consists of passing a low voltage current throug metal coils inside the fittings, embedded in the polypropylene, causing the Joule heating effect that welds the fitting with the pipe previously inserted in it.

inserted without forcing it but play-free)

Read fitting label code

Reboca, S.L. has flanged systems that enable the connection between pipes. REPOLEN flanges are PN16.
Remember that the screws tightening must always be done crosswise and gradually, to ensure a perfect coupling of the gasket.

It consists in using mechanical fittings, normally threaded. It is usually used for small diameters and thicknesses.

The assembly steps are:

- Cut the pipe perpendicularly
- Disassemble the fitting to be connected
- Insert the pipe by butt pressure
- Retighten the fitting thread

MECHANICAL SYSTEMS 14.5

Make a hole in the pipe where you want to make the new intake with the corresponding drill

Apply the heating matrices both to the pipe and to the branch to be grafted, proceeding in the same way as with any socket weld

Cut the edges that may remain carefully so as not to damage the pipe

Remove the matrices and insert the branch into the hole
to solve it.

Insert the plug into the hole taking care not to insert it too much so as not to create turbulence in the water flow

ANNEXES

9.1 CHEMICAL RESISTANCE TABLE

+ Resists with insignificant variations / Resists with variations under certain conditions - Does not resist				cold sat. Cold saturation e Boiling a Aqueous solution				
Product	coscraturos	тмmmutrus		Product		concasmantos	temparvis	
		$20^{\circ} \mathrm{C}$	$60 . \mathrm{C}$				200 C	$60 \cdot \mathrm{C}$
Coconut oil		+	1	Citric acid		saturated	+	+
Flaxseed oil	100	+	+	Hydrochloric acid		10-35	+	+
Corn oil	100	+	1			concentrated	+	+
Paraffin oil	100	+	+	Chlorous acid		concentrated	+	+
Castor oil	100	+	+	Chlorosulfuric acid		100	-	-
Silicone oil	100	+	+	Cresylic acid		50	+	+
Diesel	100			Chromic acid		50	+	1
Heating oil	100	+	1			80	+	-
Fine spindle oil	100	1	1	Dichloroacetic acid		50	+	+
Engine oils	100	+	1			100	+	1
Animal oil		+	1	Stearic acid		100	+	1
Ethereal oils		1	1	Ethylenediaminetetraac	ic acid		+	+
Mineral oils	100	+	1	Fluoric acid			+	+
Vegetable oil		+	1	Hydrofluoric acid		40-40	+	1
Acetaldehyde	100	+	1	Fluorosilicic acid		32	+	+
Ammonium acetate		+	+			Conc. Sol.	+	+
Amyl acetate	100	+	1	Formic acid		10-80	+	+
Butyl acetate	100	+	1			100	+	1
Ethyl acetate	100	1	1	Phosphoric acid		0-30	+	+
Methoxybutyl acetate	100	+	1			30-90	+	+
Lead acetate	Saturated	+	+			95	+	1
Acetone	100	+	+	Phthalic acid		50	+	+
Acetic Acid	1-10	+	+	Gallic acid		saturated	+	1
	10-60	+	1	Glycolic acid		30	+	+
	80-100	+	1			55	+	+
Adipic acid		+	+			70	+	+
Aminoacetic Acid		+	+	Hypochlorous acid		conc	+	1
Aromatic Acids		+	+	Lactic acid		10-80	+	+
Arsenic Acid	100	+	+			90-100	+	1
Benzenesulfonic acid		+	+	Maleic acid			+	+
Benzoic acid	Aqueous Sol.	+	+	Malic acid		50	+	+
Boric acid	Sol.	+	+	Methylsulfuric acid			+	1
Bromhydric acid	10-50	+	+	Monochloracetic acid			+	+
Butyric acid		+	1	Nicotinic acid			+	+
Carbonic acid (dry / wet)	100	+	+					
Hydrocyanic acid	saturated	+	+					

Product	coscestaros			product	coscasmurox	tmamunut	
		$20^{\circ} \mathrm{C}$	$6{ }^{60}$			20^{20}	
Nitric acid	0-30	+	+	Camphor		+	1
	30-50	+	1		crystals	+	1
	70	+	1		oil	-	-
	98-98			Ally alcohol	96	+	+
Oleic acid	conc	+	1	Amyl alcohol	100	+	-
Oxalic acid	diluted	+	+	Benzyl alcohol		+	+
	saturated	+	+	Butyl alcohol		+	+
Perchloric acid	20	+	+	Ethyl alcohol	100	+	+
	50	+	1	Furfuryl alcohol	100	+	1
	70	+		Isobuty lalcohol		+	+
Picric acid		+	+	Isopropyl alcohol		+	+
Propionic acid	50	+	+	Methyl alcohol		+	+
	100	+	1	Glycolic Alcohol		+	1
Salicylic acid		+	+	Propyl alcohol		+	+
Selenic acid		+	+	Starch	saturated	+	+
Silicic acid		+	+	Chromium Alums	saturated	+	+
Sodium Acid	saturated	+	+	Ammonia	dry gas 100	+	+
Succinic acid	50	+	+		liquid	+	
Hydrogen sulphide		+	+		solution	+	+
Sulphochromic acid			-	Acetic anhydride		+	1
Sulphuric acid	0-50	+	+	Carbon dioxide	dry 100	+	+
	70	+	1		wet	+	+
	80	+	-	Phosphoric anhydride		+	+
	96	1	-	Phthalic anhydride		+	+
	98	1	-	Sulphuric anhydride		1	-
	oleum	-	-	Sulphur dioxide	wet	+	+
Sulphuric acid	10	+	+	Aniline	100	+	1
Tannic acid	10	+	+	Arsenic		+	+
Tartaric acid	10	+	+	Aspirin		+	+
	saturated	+	1	Sulphur	colloidal	+	+
Trichloroacetic acid	50	+	+	Galvanic baths		+	+
	100	+		Benzene	100	1	-
Fatty acids with more than 4 carbon atoms		+	1	Benzine	100	1	-
Acrylonitrile	100	+	+	Benzaldehyde		+	1
Chlorine water	2	+	+	Sodium benzoate	saturated	+	+
Sea water		+	+	Potassium bicarbonate	saturated	+	+
Hydrogen peroxide	30	+	,	Sodium bicarbonate	saturated	+	+
	90	+	-	Potassium dichromate	saturated	+	+
Aqua regia		-	-	Sodium dichromate	saturated	+	+
				Sodium bisulphate	saturated	+	+
				Sodium bisulfite	saturated	+	+

Bromine
Aromochloromethane
Calcium bromide
Potassium bromide
Butadiene
Butanediol
Butylene Glycol
Coffee
Cinnamon

	oil		
Ammonium carbonate		+	+
Calcium carbonate		+	+
Barium carbonate	saturated	+	+
Bismuth carbonate	saturated	+	+
Magnesium carbonate	saturated	+	+
Potassium carbonate		+	+
Sodium carbonate	solution	+	+
Beeswax		+	1
Beer		+	+
Ketones	100	+	1
Copper cyanide		+	+
Mercury cyanide	saturated	+	+
Potassium cyanide	saturated	+	+
Sodium cyanide	saturated	+	+
Cyclohexane		+	+
Cyclohexanol		+	1
Cyclohexanone		+	1
Calcium chlorate	saturated	+	+
Barium chlorate	saturated	+	+
Potassium chlorate	saturated	+	+
Sodium chlorate	saturated	+	+
Sodium chlorite	50	+	+
Chlorine	wet gas	1	-
	dry gas	1	-
	liquid 100	-	-
Chlorobenzene		1	-
Chloroethanol		+	+
Chloroform	100	1	-

Chloroform
100

Aluminium chloride	solution	+	+
Amyl chloride	100	/	-
Ammonium chloride	solution	+	+
Antimony chloride	saturated	+	+
Barium chloride	saturated	+	+
Benzoyl chloride		1	/
Calcium chloride	solution	+	+
Zinc chloride	solution	+	+
Copper chloride	solution	+	+
Tin chloride	saturated	+	+
Ferrous chloride	saturated	+	+
	solution	+	+
Ferric chloride	solution	+	+
Magnesium chloride	solution	+	+
Mercuric chloride	sublimated	+	+
	solution	+	+
Methylene chloride	100	,	/
Nickel chloride	saturated	+	+
Potassium chloride	solution	+	+
Sodium chloride	solution	+	+
Sulphuryl chloride		-	-
Thionyl chloride		-	-
Creosote		+	+
Cresol		+	+
Potassium chromate	saturated	+	+
Shampoo		+	+
Decalin	100	/	-
Disinfectants		+	-
Synthetic detergents	solution	+	+
Dextrin	saturated	+	+
Dextrose	saturated	+	+
Methyl dichloroacetate		+	+
Dichloroethane		'	,
Dichloroethylene		-	-
Potassium dichromate	saturated	+	+
Sodium dichromate	saturated	+	+
Diethylene glycol		+	1
Diisobutylketone		+	-
Diethanolamine		+	1
Dimethylformamide		+	1
Dioxane	100	+	+
Carbon dioxide	saturated cold	+	+
	wet 100	+	+
	dry 100	+	+

Emulsifiers

Acrylic Emulsions
Photographic emulsions
Epichlorohydrin
Turpentine Essence
Whale sperm
Aliphatic esters

Ethanol
 Ethanol

$$
100
$$

Ether

Petroleum Ether
Dibutyl ether
Diethyl ether
Ethyl ether
Isopropyl ether
Ethylbenzene
Ethylene glycol
Tanning extracts
Orange extracts
Vanilla extracts
Phanacetin
Phenylsulfonate
Phenol

		+	+
Potassium ferricyanide	saturated	+	+
Sodium ferricyanide	saturated	+	+
Fluorine		-	-

Ammonium fluoride

	70	+	+
Aluminium fluoride		+	+
Copper Fluoride	saturated	+	+
Potassium fluoride	saturated	+	+
Sodium fluoride	saturated	+	+
Formaldehyde	$10-30$	+	+
	$30-40$	+	+
Phosphine	100	+	+
Ammonium phosphate		+	+
Tri-b-chloroethylene phosphate		+	+
Tributyl phosphate		+	+
Tricesyl phosphate	100	+	+
Disodium phosphate		+	+
Sodium phosphate		+	
Trisodium phosphate			+
	saturated	+	+

Product	concesmunow	тменаития
		60 C
Yellow phosphorus	100	+ +
Fructose	saturated	+ +
Dibutyl phthalate	100	+ 1
Furfural	100	1 -
Natural gas		+ +
Nitrous gases		+ +
Diesel		+ -
Petroleum jelly		+ +
Glycerine.	solution	+ +
Glycol	concentrated	+ +
Butyl glycolate		+ +
Glucose		+ +
Heptane		1 -
Hexachlorobenzene		+ +
Hexane	100	+ 1
Hexanol	100	1 -
Chloral hydrate	solution	+ +
Hydrazine hydrate		+ +
Aromatic hydrocarbons		1 -
Hydrogen	100	+ +
Hydroquinone		+ +
Hydrosulphite	10	+ +
Ammonium hydroxide	p.c. 0.88	+ +
Calcium hydroxide	saturated	+ +
Barium hydroxide	saturated	+ +
Magnesium hydroxide	saturated	+ +
Potassium hydroxide	concentrated	+ +
	20	+ +
	50	+ +
Sodium hydroxide	30	+ +
	concentrated	+ +
Calcium hypochlorite	15\% Active Cl	+ +
Sodium hypochlorite		+ +
Iodine		+ +
Isooctane		+ 1
Isopropanol		+ +
Syrups	usual	+ +
Kerosene		1 /
Lanolin		+ +
Latex		+ +
Milk		+ +
Bleach	15\% act.	+ +
Yeast		+ +
Hydraulic Liquid		+ 1

Methanol
4-methyl-2-pentanol Methylcyclohexane Methyl ethyl ketone
Methylglycol
Methoxybutanol
Sulphochromic mixture
Methyl monochloroacetate
Carbon monoxide
Morpholi
Naphtha
Naphthalene
Ammonium nitrate
Calcium nitrate
Magnesium nitrate
Mercury nitrate
Nickel nitrate
silver nitrate
Ferric nitrate
Potassium nitrate
Sodium nitrate
o-dichlorobenzene
Oleum
${ }^{\mathrm{o}}$-nitrotoluene
Phosphorus oxychloride
Carbon Oxide
Zinc oxid
Oxygen
-dochlorobenze
Phosphorus pentoxide
Potassium perborate
Sodium perborate Potassium perchlorate
Perchlorethylene

\qquad
saturated
saturated saturarated
saturated
saturated
saturated solution

	-	-
	+	1
	+	1
	+	+
	+	+
100	+	1
100	1	-
	1	-
100	+	+
saturated	+	+
	+	+
saturated	+	+
100	1	-

product	сомсалтмток	тмшгм
		20.0
Potassium permanganate	6	+ +
	20	+ +
Sodium peroxide	10	+
	saturated	1
Ammonium persulphate	saturated	+ +
Potassium persulphate		+ +
Petroleum		+ 1
Pyridine		+ 1
Tetraethyl lead	100	1 1
Polyglycols		+ +
Caustic Potash		+
Propane	gas	+ +
Propylene glycol		+ 1
Pseudocoumene		11
Fruit pulp		+
p -Xylene	100	1 -
Resorcinol		+
Photographic developers		+ +
Common salt	saturated	+
Brine	saturated	+
Tallow		+
Cider		+
Sodium silicate	solution	+
Caustic soda		+
Aluminium sulphate	solution	+
Ammonium sulphate	saturated	+
Barium sulphate	saturated	+
Calcium sulphate		+
Zinc sulphate	saturated	+ +
Copper sulphate	saturated	+
Ferrous sulphate		+ +
Magnesium sulphate	saturated	+
Nickel sulphate	saturated	+
Potassium sulphate	concentrated	+ +
Sodium sulphate	concentrated	+
Barium Sulfite	saturated	+
Potassium sulphite	concentrated	+
Sodium sulphite	saturated	+ +
Dimethyl sulfoxide		+ +
Ammonium sulphide	saturated	+ +
Barium sulphide	saturated	+ +
Calcium sulphide		+ +
Carbon sulphide	100	1 -

		$20^{\circ} \mathrm{C}$	
Potassium sulphide	concentrated	+	+
Sodium sulphide	25	+	+
	saturated	+	+
Talcum	100	+	+
тea		+	+
Tetrabromoethane		-	-
Tetrachloroethane		1	-
Tetrachloroethylene	100	1	-
Carbon tetrachloride	100	+	/
Tetrahydrofuran	100	+	1
Tetraline	100	+	/
Tincture of iodine		+	1
Ammonium thiocyanate	saturated	+	+
Thiophene		,	/
Sodium thiosulphate	saturated	+	+
Toluene	100	1	-
Trichloroethylene	100	-	-
Antimony trichloride		+	+
Phosphorus trichloride	100	+	1
Trielanolamine	100	+	-
Urea	33	+	+
Vaseline		1	1
Vinegar	commercial	+	+
Wine		+	+
White spirit		1	1
Apple juice		+	+
Orange juice		+	+
Tomato juice		+	+
Grape juice		+	+
Carrot juice		+	+

Hikepolen

) Repolen

PRODUCT MANUFACTURED AND DISTRIBUTED BY
CLARIANO N6 • APDO $92 \cdot 46850 \cdot$ LOLLERIA • VALENCIA • SPAIN
PHONE NUMBER. $+34962200298 \cdot F A X+34962200013$
REBOCA@REBOCA.COM . WWW.REBOCA.COM
©
ㄹ

